
Speci
al

PyC
on 2

019

Pre
vi

ew
G

ettin
g

 S
tarted

 w
ith

 A
d

afru
it C

ircu
it P

layg
ro

u
n

d
 E

xp
ress

Getting Started
with Adafruit Circuit
Playground Express

Special PyCon 2019
Preview!

Mike Barela

Speci
al

PyC
on 2

019

Pre
vi

ew

Maker Media, Inc.
San Francisco

Getting Started
with Adafruit Circuit
Playground Express
THE MULTIPURPOSE LEARNING
AND DEVELOPMENT BOARD
WITH BUILT-IN LEDS, SENSORS,
AND ACCELEROMETER

Mike Barela
Foreword by Limor “Ladyada” Fried

Speci
al

PyC
on 2

019

Pre
vi

ew

To purchase this book in its entirety, please visit

https://amzn.to/2CMD3vZ

https://amzn.to/2CMD3vZ

Speci
al

PyC
on 2

019

Pre
vi

ew

Copyright © 2018 Mike Barela. All rights reserved.

Printed in Canada.

Published by
Maker Media, Inc.
1700 Montgomery Street, Suite 240
San Francisco, CA 94111

Maker Media books may be purchased for educational, business, or
sales promotional use. Online editions are also available for most titles
(safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Publisher: Roger Stewart
Editor: Patrick Di Justo
Copy Editor: Elizabeth Welch
Proofreader: Scout Festa
Interior and Cover Designer and Compositor: Maureen Forys,
Happenstance Type-O-Rama
Indexer: Valerie Perry, Happenstance Type-O-Rama

September 2018: First Edition

Revision History for the First Edition

2018-09-15 First Release

See oreilly.com/catalog/errata.csp?isbn=978-1-68045-488-8 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker
Media, Inc. The Maker Media logo is a trademark of Maker Media, Inc. Getting
Started with Adafruit Circuit Playground Express and related trade dress are
trademarks of Maker Media, Inc. Many of the designations used by manu-
facturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Maker Media, Inc. was
aware of a trademark claim, the designations have been printed in caps or
initial caps. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are
accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting
from the use of or reliance on this work. Use of the information and instruc-
tions contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-68045-488-8

corporate@oreilly.com
oreilly.com/catalog/errata.csp?isbn=978-1-68045-488-8

Speci
al

PyC
on 2

019

Pre
vi

ew

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert
content in both book and video form from the world’s leading authors in
technology and business. Technology professionals, software developers, web
designers, and business and creative professionals use Safari Books Online as
their primary resource for research, problem solving, learning, and certification
training. Safari Books Online offers a range of plans and pricing for enterprise,
government, education, and individuals. Members have access to thousands
of books, training videos, and prepublication manuscripts in one fully search-
able database from publishers like O’Reilly Media, Prentice Hall Professional,
Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions to the publisher:

Maker Media, Inc.
1700 Montgomery Street, Suite 240
San Francisco, CA 94111

You can send comments and questions to us by email at books@makermedia.com.

Maker Media unites, inspires, informs, and entertains a growing community
of resourceful people who undertake amazing projects in their backyards,
basements, and garages. Maker Media celebrates your right to tweak, hack, and
bend any Technology to your will. The Maker Media audience continues to be a
growing culture and community that believes in bettering ourselves, our envi-
ronment, our educational system—our entire world. This is much more than an
audience, it’s a worldwide movement that Maker Media is leading. We call it the
Maker Movement.

To learn more about Make: visit us at make.co.

makezine.com

Speci
al

PyC
on 2

019

Pre
vi

ew

Contents

 Foreword ix
 Preface xi

1 Introducing Circuit Playground Express 1

2 A Tour of Circuit Playground Express 7
Circuit Playground Express Outputs 10
Circuit Playground Express Inputs 12
Powering Your Circuit Playground Express 13
Operating System Software Setup 17
Chapter Questions 20

3 Getting Started with Microsoft MakeCode 21
Connecting a Circuit Playground Express to a Computer 22
MakeCode: Your First Program 24
Uploading MakeCode to Circuit Playground Express 30
Modifying a Program 39
Saving a Program 44
Under the Hood: JavaScript 46
Wrap-Up 48
Chapter Questions 48

4 Microsoft MakeCode and Interactivity 49
Using Buttons 50
Shake, Rattle, and Roll 63
Making the Accelerometer Display Multiple Animations 67

Speci
al

PyC
on 2

019

Pre
vi

ew

vi GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Using the Slide Switch 70
Your Turn: Slide Switch 74
JavaScript 74
Wrap-Up 76
Chapter Questions 76

5 Advanced Microsoft MakeCode 77
Sound and Music 78
Listening for Sounds 85
Wrap-Up 92
Chapter Questions 92

6 Coding with CircuitPython 93
CircuitPython vs. Other Python Implementations 95
Installing CircuitPython 96
Text Editors 102
Eject or Sync the Drive after Writing 103
Using Mu 105
Creating Python Code 107
Examining the CircuitPython Blink Code 114
Output from Circuit Playground Express
to the Computer 115
The Adafruit Circuit Playground Express Library 119
Running Code on Express via the REPL 124
Wrap-Up 126
Chapter Questions 126

7 Using the Circuit Playground Express
CircuitPython Library 127
Reading Sensors 128
File Input and Output 131
Capacitive Touch and Music 142
Emulating a Computer USB Keyboard 155

Speci
al

PyC
on 2

019

Pre
vi

ew

viiCONTENTS

Mouse Emulation 161
Wrap-Up 165
Chapter Questions 165

8 Using the Arduino Development Environment 167
The Arduino Programming Language 170
Installing the Arduino IDE 171
Structure of an Arduino Program 177
Uploading Code to Circuit Playground Express 184
The Circuit Playground Arduino Library 191
Circuit Playground Library Functions 195
Example Code 199
Libraries and Compatibility 201
Wrap-Up 204
Chapter Questions 205

A Troubleshooting 207
USB Cable and Power Issues 207
Connectivity Issues 210
CircuitPython Issues 213
Arduino IDE Issues 215
Common Arduino Library Problems 215
Error Messages 218
Usage Issues 219
Manufacturer Support 221

B Reference Materials 223
On the Internet 223
Publications 225

 About the Author 227
 Index 229

Speci
al

PyC
on 2

019

Pre
vi

ew

Foreword

The story of Circuit Playground begins maybe eight years ago.
Adafruit was still an apartment company then. My partner

and I were chatting with a middle school superintendent who
told us that the school was being pitched STEM (science, tech-
nology, engineering, and mathematics) education products for its
students (the products were similar to tablets with sensors that
could plug in). But at $500 each, the school could afford only one
per classroom. So twenty-plus kids would have to share.

At the time, Arduino was becoming popular—it’s a lot less
expensive! But younger students struggled with learning C++
(especially if they were coming from block-based Scratch pro-
gramming), and the setup could get complicated since Arduino
requires a special development environment.

For a long time, I didn’t have a solution to these problems. The
slick technology was just too expensive, and the low-cost edu-
cational kits were too hard to use. But eventually, enough stuff
was invented (low-cost ARM Cortex microcontrollers! NeoPixels!
Embedded Python!) that we were able to make the ultimate cir-
cuit board for teaching coding and electronics.

That’s where Circuit Playground comes in. Easy to use, fun to
program, and affordable for any student, it works with the Mac,
Windows, Linux, Chrome OS, and even Android! You can use it at
home, at school, at work, or on a library computer—no software
needs to be installed.

We poured all the know-how and experience we’ve had over
10 years of selling educational electronics to create something

Speci
al

PyC
on 2

019

Pre
vi

ew

x GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

for everyone. Whether you want to build cosplay props, scientific
experiments, robotics, or spy gadgets—in drag-n-drop Microsoft
MakeCode, interpreted CircuitPython, or Arduino—Circuit Play-
ground Express will be your companion as you learn and create.

—Limor “Ladyada” Fried, founder and engineer, Adafruit

Speci
al

PyC
on 2

019

Pre
vi

ew

Preface

Adafruit Circuit Playground Express provides a low-cost way to
explore programming, sensing, and interaction. The Express

is a microcontroller-based electronics and software development
board. It is programmable in Microsoft MakeCode, JavaScript,
and Python and with the Arduino development environment. Its
built-in motion, temperature, and light sensors let Circuit Play-
ground Express sense the world around it. Its 10 NeoPixel lights
and speaker allow Circuit Playground Express to communicate
with the outside world.

Circuit Playground Express is different from many beginning
electronics available today. Out of the package, Circuit Playground
Express can be connected to a computer that runs any operating
system. Load Microsoft MakeCode in an Internet-connected web
browser, and in less than 15 minutes you’ll have an interactive
project all your own.

Think—would you fancy clothes or shoes with LEDs that
dance to movement and music? Would you like a musical synthe-
sizer that plays your choice of sounds, even using fruit as your
input? Perhaps a light-up pin that makes Star Trek–like sounds
when tapped? All these and many, many more can be built using
Circuit Playground Express right out of the package!

This book provides the information to get you started using
Circuit Playground Express quickly. The information and ideas
in the book may be the foundations for your own projects and
explorations.

Speci
al

PyC
on 2

019

Pre
vi

ew

xii GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

WHO THIS BOOK IS FOR

This book is for the enthusiast, the student, the curious person
who wishes to expand their knowledge of making through inter-
activity, sensing, lights, or sound.

Skills that are useful in working through this book:

 * A knowledge of the fundamentals of what software and
hardware are.

 * Experience with desktop or laptop computers running an
operating system such as Microsoft Windows, Apple macOS,
Chrome OS/Chromebook, or Linux. Skills include navigating
a filesystem and selecting specific files to use.

 * Use of a graphical Internet web browser. Many are available,
including Chrome, Firefox, Safari, Internet Explorer, and
Microsoft Edge.

 * Use of a text-based editor on one of the listed operating sys-
tems and the ability to open a text file, change the file, and
save the file both to the computer disk and to a flash drive
connected to the computer.

Working with Circuit Playground Express is suitable for
beginners who do not know electronics or programming. After
you finish reading, you can use this book as a reference for the
techniques presented.

PREPARATION

There is no required reading to work with this book, but here are
some suggested resources that you may draw on to better under-
stand particular subjects as the book progresses.

Speci
al

PyC
on 2

019

Pre
vi

ew

xiiiPREFACE

MakeCode
The Microsoft MakeCode.org website (https://makecode.com/#learn)
is a good reference. Adafruit has a free tutorial on learning Make-
code (https://learn.adafruit.com/makecode). Adafruit continually
publishes new projects and tutorials on Circuit Playground Express
at learn.adafruit.com (https://learn.adafruit.com/). Finally, Adafruit
has support forums for assistance at forums.adafruit.com (https://
forums.adafruit.com/).

Python Basics
The website python.org (www.python.org) provides free materi-
als (www.python.org/about/gettingstarted/) to help you learn the
Python programming language.

Arduino
The book Getting Started with Arduino, Second Edition, by Massimo
Banzi (co-creator of Arduino), is a good resource to start with. I
also recommend the Adafruit Learn Arduino series (https://learn
.adafruit.com/lesson-0-getting-started), available for free online.
Both offer an introduction to the Arduino open source electronics
prototyping platform, including programming.

WHAT YOU WILL WANT TO HAVE ON HAND

To program Circuit Playground Express, you will need a Windows,
Mac, or Chromebook computer with a USB port. You need Inter-
net access to run the Microsoft MakeCode editor and to download
example code, rather than typing it in yourself.

Speci
al

PyC
on 2

019

Pre
vi

ew

xiv GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

A Good USB Type A Male-to-Male
Micro-B Cable
I cannot stress this enough: get a good USB cable for programming
Circuit Playground Express. Please consider buying a substantial
USB type A male end to type Micro-B male cable, 3 feet (1 meter)
long or so (longer or shorter is fine). Frustration and questions
come when unworkable USB cables are pressed into service. Such
cables, more often than not, do not have the USB data wires
required for communicating between the computer and the Cir-
cuit Playground Express. Worn cables may work intermittently
when bent just right—never good. A good cable will save you
hours of grief.

Overall, working with Circuit Playground Express requires
very little knowledge other than how to observe and how to
innovate.

CONVENTIONS USED IN THIS BOOK

The following typographical conventions are used in this book:

 * Menu selections are shown by a series of options separated
by the F symbol (e.g., choose Tools F Board).

 * Keyboard entries are shown in boldface (for example, enter
adafruit).

 * Monospaced font is used for program listings, as well as
within paragraphs to refer to program elements such as
variable or function names, filenames, file extensions, data-
bases, data types, environment variables, statements, and
keywords.

Speci
al

PyC
on 2

019

Pre
vi

ew

xvPREFACE

Examples
This book is here to help you get your job done. In general, you
may use the code in this book in your programs and documenta-
tion. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writ-
ing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of
examples from Make: books does require permission. Answering
a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of exam-
ple code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For exam-
ple: Getting Started with Adafruit Circuit Playground Express, by
Mike Barela (Maker Media). Copyright 2018, 978-1-68045-485-7.

If you feel your use of code examples falls outside fair use or the
permission given here, feel free to contact us at bookpermissions@
makermedia.com.

Speci
al

PyC
on 2

019

Pre
vi

ew

Coding with
CircuitPython

In this chapter, an alternate way to program Circuit Playground
Express is demonstrated using a language called Python. Python

is the fastest-growing programming language in use today and is
taught in schools and universities. It’s a high-level programming
language, which means it’s designed to be easy to read, write, and
maintain. Figure 6-1 shows Blinka, the CircuitPython mascot.

FIGURE 6-1. The Adafruit CircuitPython mascot: Blinka

6

Speci
al

PyC
on 2

019

Pre
vi

ew

94 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The change from using the graphical Microsoft MakeCode
to using text-based programming may seem like a huge one. It
is not. The Python programming language has been gaining a
steady following, significantly in the Raspberry Pi community.
Why? Because Python is easy to use, and because the language
was designed from the start to be easy to improve, extend, and
grow. The same Python code can run on a small wearable, on to
other computers, on up to a supercomputer, with perhaps only a
slight change.

Python includes modern programming commands and it
supports code extensions, called modules. (In some computer
languages, like Arduino, these are called libraries.) Modules are
code packages that can be used by a Python program to perform
specific tasks. For example, there are modules to perform complex
number crunching or to graphically plot data. And nearly all mod-
ules are open source software—code available on the Internet at
no cost and freely shared.

Module vs. Library
There’s some discussion in the computing field as to
whether code that is imported into Python is a module
or a library. To remain consistent with CircuitPython
documentation, I’ll use the term library most often. Just
think of the terms as interchangeable for this book.

 Unlike the Arduino environment, where all coding is done
on a desktop or laptop, compiled into machine code, and then
loaded onto the circuit board, Python is an interpreted language.
This means that the hardware can interpret and act on each com-
mand you type, practically instantaneously. There’s no need to
compile and upload your code to see if it works.

Speci
al

PyC
on 2

019

Pre
vi

ew

95COdING WITH CIRCUITPyTHON

CircuitPython provides interactivity via a Read–Eval–Print
Loop (REPL, pronounced rep-ul). On your computer you can type
Python commands into the REPL, and the board will process and
respond to each line of programming entered. This allows the user
to see what specific commends do in real time rather than per-
forming multiple steps to get code into a processor for execution.

CIRCUITPYTHON VS. OTHER PYTHON
IMPLEMENTATIONS

CircuitPython is the implementation of Python created by Ada-
fruit for several products, including Circuit Playground Express. It
is a fork (derivative) of MicroPython, a version of Python written
by Damien George to run on microcontrollers.

CircuitPython adds hardware support for a range of Adafruit
Industries microcontrollers. It allows users with limited hardware
experience to easily program their devices. No previous experi-
ence necessary—it’s really simple to get started!

All CircuitPython code is run from the Circuit Playground
Express internal flash drive/thumb drive, the space used previ-
ously to put MakeCode onto the board.

CircuitPython excels at the following:

 * Very fast development: Write the code, save the file, and it
runs immediately. No compiling required.

 * REPL: You can start interactive programming with the REPL.

 * Easy code changes: Since your code lives on the flash drive,
you can edit it whenever you like, and you can also keep mul-
tiple files around for easy experimentation.

 * It’s Python! CircuitPython is completely compatible with
Python (it just adds hardware support).

Speci
al

PyC
on 2

019

Pre
vi

ew

96 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

 * Strong hardware support: There are many more modules
for external sensors and capabilities than in MakeCode (but
not as many as Arduino, yet).

 * File storage: CircuitPython’s data storage ability makes it
great for data logging, playing audio clips, and otherwise
interacting with files. MakeCode doesn’t currently have
support for file storage, and Arduino has limited support at
present.

See Appendix B for more Python resources.

INSTALLING CIRCUITPYTHON

If you are sure your board already has the latest CircuitPython
release, you can skip this section (for example, a teacher says you
are all set or you have already placed CircuitPython on your Cir-
cuit Playground Express).

If you would like the latest version of CircuitPython, go ahead
and follow along. Updating the software is the same as installing
a fresh copy.

How do you know which version of CircuitPython is on your
Circuit Playground Express? Connect your Circuit Playground
Express to your computer. After a moment, the flash drive CIR-
CUITPY should appear (Figure 6-2). If your Express does not show
a new CIRCUITPY drive but shows a CPLAYBOOT drive, then it
needs to have CircuitPython loaded; see the how-to in the next
section.

If the board is providing a CIRCUITPY drive, you should see a
file on the drive called boot_out.txt; see Figure 6-3.

Speci
al

PyC
on 2

019

Pre
vi

ew

97COdING WITH CIRCUITPyTHON

FIGURE 6-2. The CIRCUITPy flash drive in Windows Explorer

FIGURE 6-3. The boot_out.txt and code.py files on the CIRCUITPy
flash drive

If you open the boot_out.txt file (usually by double-clicking it
with the mouse), the file contains information on the version of
CircuitPython placed on the board. When I updated my board for
this book, the boot_out.txt file contained the following:

Adafruit CircuitPython 3.0.0 on 2018-05-04; Adafruit Cir-

cuit Playground Express with samd21g18

Speci
al

PyC
on 2

019

Pre
vi

ew

98 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

You can compare the version number (in this case 3.0) with
the latest version on the Adafruit website and decide if a more
up-to-date version is available.

In the off chance you believe the board has failed and Circuit-
Python no longer works as it did, you can install the latest version
to set it up fresh.

Downloading the Latest Version of
CircuitPython
When you looked for CircuitPython on your Circuit Playground
Express, you might not have found it. If there is no CIRCUITPY
drive, there might be a CPLAYBOOT drive. This indicates the
board was being used for MakeCode or something else (see Fig-
ure 6-4). No worries—this is easily fixed. You can also check to
ensure your CircuitPython installation is up to date.

FIGURE 6-4. When you plug Circuit Playground Express in and
you get a CPlAyBOOT drive rather than a CIRCUITPy drive, don’t
worry—that’s easily fixed.

Use your Internet web browser to go to https://github.com/
adafruit/circuitpython/releases/latest. Scroll down to the list of
CircuitPython files, and choose the file that contains the text
 circuitplayground_express in the filename. When you click the
file, the operating system will display a box that asks you where
to save the UF2 file that is the CircuitPython code. You can save

https://github.com/adafruit/circuitpython/releases/latest
https://github.com/adafruit/circuitpython/releases/latest

Speci
al

PyC
on 2

019

Pre
vi

ew

99COdING WITH CIRCUITPyTHON

it to any file directory you like; just remember where you save it.
On Windows this can be the desktop or the Downloads or Documents
folder. You can also save the file to a personal flash drive.

Remembering the Gotchas from
Chapter 2
If you are running Windows 7, you will need a software
driver installed to have your computer recognize the
Circuit Playground Express board correctly.

Be sure you use a high-quality USB-to-MicroUSB cable
with both power and data lines. Old cables, or cables
that are used only to charge another device, will not
work and will almost certainly lead you to frustration.

Plug your Circuit Playground Express into your computer and
ensure the green power LED is on. Find the Reset button on your
board. It’s the small button located in the center of the board.

Tap this button once to enter the bootloader. The NeoPixels
on the board will flash red and then stay green. A new drive will
show up on your computer. The drive will be called CPLAYBOOT
(see Figure 6-5).

FIGURE 6-5. The CPlAyBOOT drive appears when you reset
the board.

If you do not see this drive on your computer, don’t be discour-
aged. Tap the Reset button twice. The rhythm of the taps on the
Reset button needs to be correct, and sometimes it takes a try or

Speci
al

PyC
on 2

019

Pre
vi

ew

100 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

two. If you have a Circuit Playground Express and it’s fresh out of
the bag, pressing the button once will probably do it.

The number of presses to get the green circle and CPLAYBOOT
drive depends on what software was used previously: MakeCode,
CircuitPython, or Arduino. There is no “wrong” way—use one
press or two, as long as the CPLAYBOOT drive shows up in the
operating system.

Take the UF2 file you saved from the web and drag it onto the
CPLAYBOOT drive (or otherwise initiate a copy of the file to the
Circuit Playground Express CPLAYBOOT drive). The red D13 LED
will flash as the file is transferred and the NeoPixels will blink and
then go out.

If everything is successful, your computer will show a new
flash drive named CIRCUITPY. This is your indication that
you now have CircuitPython ready on your Circuit Playground
Express. Your computer, for instance Windows 10, may pop up
a message that it is setting up a new device called Circuit Play-
ground. This is fine.

On the drive, you should see a file named boot_out.txt on the
CIRCUITPY drive.

Now it’s time to check whether you have the latest version
of CircuitPython on your Circuit Playground Express. Open the
boot_out.txt file, and you will see information on the version of
CircuitPython that was placed on the board:

Adafruit CircuitPython 3.0.0 on 2018-05-04; Adafruit

 CircuitPlayground Express with samd21g18

It is possible that your board will show a version number
greater than 3.0. Version 3.0.0 was released in 2018 (with addi-
tional releases planned after that) as Adafruit provides additional
functionality. samd21g18 looks like a gamer tag but it is the manu-
facturer’s name for the microcontroller on the board.

Speci
al

PyC
on 2

019

Pre
vi

ew

101COdING WITH CIRCUITPyTHON

Do I Have to Install CircuitPython
Regularly? Must I Upgrade?
you have to install CircuitPython only once unless you
are switching back and forth between CircuitPython,
MakeCode, and Arduino. Installing once, you are free
to code all you like without going through the install
process again until you want to upgrade. Upgrades
from Adafruit may come out periodically, adding addi-
tional features or fixing issues noted by users. Often,
it is worth upgrading if you want to use new features
or there is a major update. If you have a project you
intend to use and it works well, consider keeping
things the way they are.

I’m Having Weird Installation
Issues!
don’t worry! The problem could be a corrupt flash
drive, which is not the end of the world (or your
board!). If this happens, follow the steps found in
Appendix A.

Now that the Circuit Playground Express board is ready, it’s
time to code in Python. First, though, you need to make a deci-
sion. The process of creating code files involves typing in text,
much like the JavaScript we saw in MakeCode. What software
should you use to create the code files? Python commands (code)
will be saved into a text-based file. For that we need a text-editing
program.

Speci
al

PyC
on 2

019

Pre
vi

ew

102 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

TEXT EDITORS

Unless you are typing in the REPL (more on using the REPL later
in the chapter), you’ll want to type your CircuitPython code in
a text editor. A text editor is a program on a PC, Mac, Linux, or
Chromebook that accepts text input and allows you to edit the
text and save the final result to disk.

No one wants to type complex programs into the REPL over
and over. One typing mistake and we’d have to start all over. If we
store the program text in a file, we can save it for later use.

Text editors come standard with all operating systems:

 * PC/Windows: Notepad, Wordpad, Microsoft Word

 * Linux: Nano, Vim, EMACS

 * Mac: TextEdit, Pages, TextMate

 * Chromebook: Caret, Google Docs, Writebox, Text

If you are in a learning environment, your teacher will often
tell you which editor to use and guide you on how to use it. If
you’re going through on your own, you are free to select your own
text editor. Full-fledged word processors such as Microsoft Word,
Google Docs, and Mac Pages do not save plain text by default. A
more basic editing program often works best.

Try the Mu Editor (if possible). Mu is a simple editor that
runs on Windows, macOS, Raspberry Pi, and Linux (the list may
expand to other platforms as the developers have time). A serial
console is built right into the Mu program so that you get imme-
diate feedback from your board’s serial output and easily use the
REPL in the same program!

If you find you cannot use Mu, use the text editor of your
choice.

For Chromebook, the examples will be using the Caret editor.
A separate terminal emulation program is needed to type com-
mands into the REPL and to receive REPL and program output

Speci
al

PyC
on 2

019

Pre
vi

ew

103COdING WITH CIRCUITPyTHON

from CircuitPython. This book will use the Chromebook terminal
emulator Beagle Term to perform serial input and output. Both
applications are free in the Chrome OS app store.

NOTE Mu will be shown in most examples. Mu is the
recommended editor for Windows, Mac, and linux.
Please consider using it (unless you have a favorite
editor already!). This eliminates the need for using
two programs, a text editor and a terminal emula-
tion program, to interact with the Circuit Playground
Express serial input and output. Mu is not required. If
you are more experienced, another editor and a ter-
minal program will work fine.

WARNING Ensure that you use an editor that
writes out files completely when you save a file to
disk. It is so easy to write your code in an editor and
fail to save the code to disk. Many “good” editors will
prompt you to save your work, but some do not. Both
Notepad (the default Windows editor) and Notepad++
can be slow to write. you need to click the save icon
to ensure your data is saved, and you must be sure to
eject the drive.

EJECT OR SYNC THE DRIVE AFTER
WRITING
If you are using a problematic text-editing program, not all is lost!
You can still make it work.

On Windows, you can eject or safely remove the CIRCUITPY
drive by right-clicking the drive in File Explorer and clicking Eject.
It won’t actually eject, but it will force the operating system to

Speci
al

PyC
on 2

019

Pre
vi

ew

104 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

save your file to disk. On Linux, use the sync command in a ter-
minal to force the write to disk.

When a program edit is complete, save a copy somewhere safe,
such as a hard drive or data flash drive, to ensure that you have a
copy for later use.

Installing Mu on Windows or Mac
The first step is to download the latest version of Mu. If you are
using Windows, you must be running Windows 7 or higher. For
macOS you must be running 10.12 (Sierra) or higher (Mac users
with lower versions can try the Linux instructions that follow, but
that is not guaranteed to work, according to the author of Mu).

The main Mu repository is located on the web at http://
codewith.mu.

Select the latest version for your operating system. Down-
load and save the Mu installation file to your desktop, download
folder, or wherever is handy. Run the installation program. The
installation process is operating system dependent (Figure 6-6).
Windows installation programs ending in .exe or .msi can be run
by double-clicking. macOS has its own install package.

FIGURE 6-6. The Mu program icon on Windows (left) and Mac
(right) when placed on the desktop. Icons are subject to change
by the Mu developers.

http://codewith.mu
http://codewith.mu

Speci
al

PyC
on 2

019

Pre
vi

ew

105COdING WITH CIRCUITPyTHON

Once you have the program installed on your computer, you’re
ready to start coding Python.

Installing Mu on Linux
Each Linux distro is a little different, so use the following as a
guideline. See https://codewith.mu/en/howto/install_with_python
for details.

 1. Open a terminal window.

 2. Mu requires Python version 3. If you haven’t installed
Python yet, do so via your command line using something
like sudo apt-get install python3.

 3. You’ll also need pip3 (or pip if you have only Python 3
installed); try running pip3 --version. If your system does
not have pip installed, run sudo apt-get install python3-pip.

 4. Finally, run pip3 install mu_editor.
You can now run Mu directly from the command line.

USING MU

Mu attempts to automatically detect a Circuit Playground Express
plugged into a computer. Before starting Mu, please plug in your
CircuitPlayground Express and make sure it shows up as a CIR-
CUITPY drive in your computer’s file explorer.

Once Mu is started, you will be prompted to select your mode
(Figure 6-7). Please select Adafruit CircuitPython.

Speci
al

PyC
on 2

019

Pre
vi

ew

106 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 6-7. The Mu Select Mode screen

If you get a warning that the Circuit Playground Express can-
not be found (Figure 6-8), ensure you have the board plugged into
your computer. Check to see if the CIRCUITPY drive shows up in
the available disk drives on your computer. If you are still having
issues, see Appendix A for troubleshooting tips.

FIGURE 6-8. The warning that’s shown if your Circuit Playground
Express is not plugged in when Mu is started

Speci
al

PyC
on 2

019

Pre
vi

ew

107COdING WITH CIRCUITPyTHON

You should now see the main Mu screen (Figure 6-9).

FIGURE 6-9. The Mu main editing window

Now that Mu is available, it is time to start coding Python.

CREATING PYTHON CODE

Plug your Circuit Playground Express via a known good USB cable
into your computer. Your file explorer should show that a new
flash drive is available named CIRCUITPY. (If you do not see the
drive, see the earlier section “Downloading the Latest Version of
CircuitPython” or Appendix A.)

Start the Mu editor. Usually you double-click the Mu icon in
Windows or click the Mac icon. If you are on a Chromebook, run
Caret or the editor you have chosen.

As with MakeCode, a good first program to create is one that
makes a light on the board blink. Here are the general steps:

 1. You set up the board environment before starting the main
forever loop.

 2. You create a loop that continually runs—in this case, turn-
ing an LED on, waiting, turning the LED off, waiting, then
rerunning the loop.

Speci
al

PyC
on 2

019

Pre
vi

ew

108 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Generic Python code does not know it will be running on a Cir-
cuit Playground Express. To assist Python with hardware-specific
tasks, the creators of Circuit Playground Express have easy-to-use
code that performs operations on the board, such as performing
digital input and output.

In the larger Python world, thousands of modules and librar-
ies are available for performing a wide variety of useful tasks. For
the smaller CircuitPython, memory size limits the number of
libraries a bit. Adafruit is committed to providing a wide variety
of functionality for their CircuitPython products.

Why use a library? Libraries are great for two reasons:

 * Libraries allows code portability. If you take your Circuit-
Python code for Circuit Playground Express and place it on
another CircuitPython product such as an Adafruit Feather
M0, the code will run (if you haven’t used board-specific
capabilities). The underlying hardware may be very different,
but the authors of the library have done the translation from
Python to hardware coding.

 * Libraries allow a person to focus on their project and not the
nuts and bolts of a specific hardware architecture. It is but
one premise of open source software: someone has taken the
time to write (hopefully useful) code to do something you
would also like to do, such as code that makes a motor turn
on and off. Coding the low-level motor control via hardware
can be rather difficult. If the project designer can import a
library to easily code something like motor.on and motor.off,
the designer can focus more on a project and not have to inti-
mately know how to control the motors on the circuit level.

The programmers at Adafruit have written a library for
CircuitPython to interact with the Circuit Playground Express

Speci
al

PyC
on 2

019

Pre
vi

ew

109COdING WITH CIRCUITPyTHON

board’s built-in hardware. It is called adafruit_circuitplayground
.express. The library has a number of useful functions, which we
will use in examples in this chapter.

Installing the Adafruit
CircuitPython Libraries
Adafruit and contributors have created a large num-
ber of libraries to handle the built-in hardware on
Circuit Playground Express and other devices that
may be added onto the board (like a display, for
example). you can find the file necessary to add
this capability here: https://github.com/adafruit/
Adafruit_CircuitPython_Bundle/releases.

you will need to determine the CircuitPython release
you are running on your board, which you can do by
opening the boot_out.txt file on the CIRCUITPy flash
drive when you plug the board in. As of this writing,
there were versions for a 3.0.0 branch and a 3.0.0
branch. Since I am running the 3.0.0 version of Cir-
cuitPython, I chose the corresponding 3.0.0 zip file
and saved it on my computer.

Open the zip file and you will see many small files
used for a variety of input and output devices.

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

Speci
al

PyC
on 2

019

Pre
vi

ew

110 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

With the zip file open on your computer, highlight and
copy the lib directory (which contains all the files and
subfolders we need) to the CIRCUITPy drive. It will
take some time and consume about 400kB of space.
This still leaves plenty of room on the drive for pro-
grams. Be sure to use the eject function of your file
explorer program (sync in linux) to ensure all writes
are made to the Circuit Playground Express flash
memory before disconnecting the board from USB.

Now Circuit Playground Express should be set to use
a wide variety of prebuilt libraries. If you ever need
to refresh the library with the latest code, follow the
same procedure.

To use the entire code library, you include the following com-
mand at the top of a Python program:
import adafruit_circuitplayground.express

Whenever you want to use a function in the module, you
will need to type the function name, such as when reading the
A Button:
button_read = adafruit_circuitplayground.express.button_a

Fortunately, we can shorten the function calls due to
some Python, behind the scenes. Here is how to refer to the

Speci
al

PyC
on 2

019

Pre
vi

ew

111COdING WITH CIRCUITPyTHON

adafruit_circuitplayground.express module by using the handy
acronym cpx:
from adafruit_circuitplayground.express import cpx
Objects to Circuit Playground Express objects can now be
referred to their abbreviated form
button_read = cpx.button_a

Much better to read—and less typing.
For the blinking D13 LED, we’ll use the Circuit Playground

Express library in CircuitPython.
Type the following code into your text editor:

import time
from adafruit_circuitplayground.express import cpx
while True:
 cpx.red_led = True
 time.sleep(1)
 cpx.red_led = False
 time.sleep(1)

For the lines after while True:, you should indent the code.
Indenting (putting space before the text on a line) is done by
either typing four spaces or pressing the Tab key. This informs
Python that the code should all be contained in the statement
above it. The while True: provides a forever-style loop as in Make-
Code or the loop() function in Arduino. The value True will always
be true so while True: will always loop all the statements within it.

To Tab or to Space
Some coders prefer to indent code using spaces. Many
Python programmers indent with the Tab key, which is
equal to a set number of spaces. Neither is wrong, but
all agree that you should not mix tabs and spaces or
you may end up with a Python error that will not be
obvious to fix. Some text editing programs might put
an actual tab character into the text file. The editor
might convert a tab to multiple spaces. Consistency is
the important thing. Using Tab will almost never make
someone later editing your code question your choice.

Speci
al

PyC
on 2

019

Pre
vi

ew

112 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Now save your program to a disk. You will want a place to store
a copy of your code for later use; this can be a hard disk, a flash
drive, or online storage like Google Drive.

When you save the program, use the filename blink.py. The
.py at the end is called the file extension, and it lets you and others
know the text file contains Python code. Also, save the program as
code.py. This is the name CircuitPython recognizes as the current
program you wish to run.

Program Names
The CircuitPython file you copy over to run on Circuit
Playground Express should always be called code.py.
This is so the Python interpreter knows the name of
the code you want to run.

If you use mycoolprog.py or anything else, the board will
not know that file is the code you wish to run. Feel
free to use a more descriptive name on your backup
storage device copies—for example, music-on-tilt.py.

The CircuitPython authors state there are four filenam-
ing options for the code the board will run: code.txt,
code.py, main.txt, and main.py. CircuitPython looks for
those files, in that order, and then runs the first one
it finds. The author and Adafruit suggest using code.py
as your code file.

Still, it is important to know that the other options
exist. If your program doesn’t seem to be updating
as you work, make sure you haven’t created another
code file that’s being read instead of the one you’re
working on.

Throughout the book, we will use code.py as the
 CircuitPython program to run.

Speci
al

PyC
on 2

019

Pre
vi

ew

113COdING WITH CIRCUITPyTHON

Running the Python Code
Okay, so at this point you have your Python program. Let’s get
that code running.

Plug in your Circuit Playground Express, via USB, to your com-
puter. The board should show up as a flash memory drive named
CIRCUITPY.

Copy the file code.py you saved earlier via your computer’s file
program over to your CIRCUITPY drive.

If you are using the Mu editor, you can use the save button
to save the file to Circuit Playground Express if you named the
program code.py. If you need a “Save as” function to make the
copy, double-click the filename on the Mu tab that contains the
program name. A dialog box will appear allowing you to name and
save the code wherever you wish.

The red D13 LED next to the USB connector should now be
flashing. The Python code is working!

On the off chance your code is not working:

 * Be sure the green power LED is on and you see the CIR-
CUITPY flash drive.

 * Be sure your file is called code.py (and not blink.py or some-
thing else). Unlike MakeCode filenames, the py file on the
board must be named code.py.

 * You can press the Reset button and that should restart the
Python code if it is not running already.

 * Double-check your Python program against the earlier list-
ing. The indented text should not mix tabs and spaces. You
must indent the text as shown. In Python, that indicates the
text is in a loop like MakeCode.

Speci
al

PyC
on 2

019

Pre
vi

ew

114 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

EXAMINING THE CIRCUITPYTHON
BLINK CODE

Without going into the details of the entire Python programming
language, we can understand what the code is doing by comparing
the code to similar actions in MakeCode.

Modules are similar to the code blocks in MakeCode that
allow you to select blocks of a specific type—for example, LOOPS
for blocks that perform looping actions, LIGHT for blocks that turn
LEDs on and off, and so on. What we do not have at hand are
the range of statements that can be created in each library—the
library building blocks. Let’s explore them.

The while True: statement is the same as the forever loop
in MakeCode. The code within the while True: loop will be exe-
cuted “forever.” The code that follows while can be any math-
ematic statement that evaluates to a True or False condition.
It could be x < 3 or another comparison that is evaluated as
True or False. Here we just use True, so in essence while True:
always loops (it never exits because the constant value True is
never False).

The code in the while loop is similar to the code used in
MakeCode. The LED is turned on by setting the value of the
object cpx.red_led to True. The time function waits 1 second.
The LED is turned off by setting the value of the object cpx.
red_led to False. Then another second elapses before starting
the loop again.

With additional examples, you’ll see more Python state-
ments and library functions that build on the work of the blink
example.

Speci
al

PyC
on 2

019

Pre
vi

ew

115COdING WITH CIRCUITPyTHON

Using the Internal (Frozen)
CPX Library
The CPx library is always available to CircuitPython
programs. As of CircuitPython version 2.3.0, CPx is a
frozen library. A frozen library is part of the core of
CircuitPython as of version 3.0.0 and higher. No file
in the Circuit Playground Express /lib directory is
required to support the CPx library.

If you have upgraded from a CircuitPython version
prior to 3.0.0 and you have library files in the /lib sub-
folder on the CIRCUITPy drive, you will want to delete
the CPx library in /lib. you do this by deleting the
directory and files in /lib/adafruit_circuitplayground/.
That way, you can be sure that you are using the fro-
zen version of the CPx library.

OUTPUT FROM CIRCUIT PLAYGROUND
EXPRESS TO THE COMPUTER

Earlier when we programmed Circuit Playground Express using
MakeCode, there were no blocks that allowed the user to interac-
tively communicate with the board. The computer allowed you to
code and let you see what that code would do. But there was no
ability for the code to take computer input or format output to
the computer. Fortunately, CircuitPython has greater flexibility
when performing input and output.

Up until now, the USB connection has provided two functions:

 * Power the board via the USB cable

 * Enable loading code and reviewing files on the device as if
the board is a flash memory drive

Universal Serial Bus (USB) provides a number of other
functions that are very useful. This capability can be used by

Speci
al

PyC
on 2

019

Pre
vi

ew

116 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

programming in CircuitPython (or later in Arduino). Two addi-
tional functions that are extremely useful are

 * Input and output to the connected computer over USB—
typically called serial communications

 * Human Interface Device (HID) mode, which allows the board
to emulate devices such as a keyboard or a mouse

Serial Output
Time to modify our first Python program. Add the line that starts
with print below the while True: statement to your code:

import time
from adafruit_circuitplayground.express import cpx
while True:
 print("Hello CircuitPython!")
 cpx.red_led = True
 time.sleep(1)
 cpx.red_led = False
 time.sleep(1)

Please make sure it is indented and typed correctly with two
double quotation marks and two parentheses.

The print statement will send the function argument to the
serial output (out the USB port back to your computer).

Here is where using the Mu editor helps. If you do not have
Mu, skip ahead for how to get the serial output.

Click the Serial icon, the fifth icon from the left with a double
arrow icon on it (see Figure 6-10).

FIGURE 6-10. The Serial icon in the Mu editor, fifth from the left,
has a double arrow icon.

Speci
al

PyC
on 2

019

Pre
vi

ew

117COdING WITH CIRCUITPyTHON

The Serial screen acts both as a command input/output win-
dow and as an interactive REPL Python environment.

Once you have typed in the print line, your screen should look
similar to the one in Figure 6-11. You can adjust the size of each
window; in Figure 6-11, I expanded the Serial window to show
more of what is being output by Circuit Playground Express.
Left-click and hold the mouse on the light gray line between the
code and Serial windows, adjust, and then release the left mouse
button.

FIGURE 6-11. With the Serial window open, serial output can be
seen.

Every two seconds, you should see the words Hello, Circuit-
Python! display on the screen. If you don’t see the text at the bot-
tom of the screen, press Ctrl+D to restart the program.

Speci
al

PyC
on 2

019

Pre
vi

ew

118 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The print function allows the user to print text and numbers
through the USB port on Circuit Playground Express to the host
computer. With the Mu editor, the text shows up in the Serial
window.

If you are not using Mu, the text can be seen by any program
that opens Circuit Playground Express as a serial device. On a Mac,
the screen command opens up a compatible serial connection.
On Windows, you need a terminal emulation program such as
PuTTY. On Chromebooks, you need a terminal program such
as Beagle Term.

If you’re using a Chromebook, plug in your Circuit Playground
Express, and then run Beagle Term. You should get a screen sim-
ilar to the one in Figure 6-12 with a /dev/ttyACM0 or ACM1 port
already filled in. If you need to switch ports to a different USB
device, do it here. Then click the Connect button (the other set-
tings are fine).

FIGURE 6-12. Beagle Term on Chromebook, settings screen

Figure 6-13 shows the corresponding Beagle Term output
from the CircuitPython print statement.

Once you have a method for getting data from Circuit Play-
ground Express to your computer, what data might be output?

Speci
al

PyC
on 2

019

Pre
vi

ew

119COdING WITH CIRCUITPyTHON

FIGURE 6-13. Chromebook serial output to Beagle Term for the
Hello CircuitPython demo

With all the sensors on the board, it would be great to use Cir-
cuit Playground Express to measure things like temperature and
light intensity and send them back to the computer to record for
later use. The larger NeoPixel LED lights can indicate certain val-
ues measured by the board, but actual numbers for values makes
the output easier to use for measurements. You can do so easily
(and you will in the next chapter) when you learn more about
functions available for program use.

The Circuit Playground Express code library has the functions
that let you use all the capabilities of the board. The next section
will list them all for reference.

THE ADAFRUIT CIRCUIT PLAYGROUND
EXPRESS LIBRARY

To effectively use the capabilities of Circuit Playground Express
in CircuitPython, we need a reference for all the library functions
available. This section lists the functions available as of this writ-
ing. An up-to-date list (for example, if Adafruit changes or adds
to the library) is located at http://circuitpython.readthedocs.io/
projects/circuitplayground/en/latest/api.html.

http://circuitpython.readthedocs.io/projects/circuitplayground/en/latest/api.html
http://circuitpython.readthedocs.io/projects/circuitplayground/en/latest/api.html

Speci
al

PyC
on 2

019

Pre
vi

ew

120 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

All the code fragments in Table 6-1 assume you have the
Python import statement at the top of your code like this:
from adafruit_circuitplayground.express import cpx

NOTE A parameter is a value that you provide to
a function to set the behavior of that function. For
example, in the two statements print(3.0) and print(x)
the value 3.0.0 and the variable x are considered the
parameters used for the print function.

TABlE 6-1. Adafruit Circuit Playground Express library functions
and usage

ACTION CPX LIBRARY USAGE
Accelerometer x, y, z = cpx.acceleration

print((x, y, z))

Button A if cpx.button_a:

 print("Button A pressed!")

Button B if cpx.button_b:

 print("Button B pressed!")

Slide Switch print("Slide switch:", cpx.switch)

(True to the left, False to the right)

Red (D13) LED cpx.red_led = True

time.sleep(1)

cpx.red_led = False

time.sleep(1)

(True turns LED on, False turns LED off)

Temperature
Sensor Value

temperature_c = cpx.temperature

temperature_f = temperature_c * 1.8 + 32

print("Temperature celsius:",
temperature_c)
print("Temperature fahrenheit:",
temperature_f)

Speci
al

PyC
on 2

019

Pre
vi

ew

121COdING WITH CIRCUITPyTHON

ACTION CPX LIBRARY USAGE
Light Sensor Value print("Light Value:", cpx.light)

Play WAV file cpx.play_file("laugh.wav")

The WAV file must be on the board flash drive.

Play a tone on
the speaker (fixed
duration)

Parameters:

frequency (integer)—The frequency of the
tone in Hz

duration (decimal)—The duration of the tone
in seconds

cpx.play_tone(440, 1.0) # 440 hz for 1
second

Play a tone on the
speaker (until told
to stop)

Parameter: frequency (integer)—The fre-
quency of the tone in Hz

cpx.start_tone(262)

Stop playing a tone
previously started
with start_tone

cpx.stop_tone()

Detect the board
being tapped

cpx.detect_taps = 1

if cpx.tapped:

 print("Single tap detected!")

Detect the
board being
double-tapped

cpx.detect_taps = 2

if cpx.tapped:

 print("A double-tap detected!")

Detect when board
is shaken

Parameter: shake_threshold (integer)—The
threshold shake must exceed to return True
(default: 30). Lower = more sensitive; keep
above 10.

if cpx.shake():

 print("Shake detected!")

if cpx.shake(100):

 print("Hard shake detected!")

Set NeoPixel LEDs Set the color of NeoPixels; values are Red,
Green, Blue, and can each range from 0 (off)
to 255 (full on):

cpx.pixels[9] = (30, 0, 0)

Speci
al

PyC
on 2

019

Pre
vi

ew

122 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

ACTION CPX LIBRARY USAGE
Set NeoPixel LEDs
(continued)

Pixels are numbered counterclockwise from
cpx.pixels[0] through cpx.pixels[9].

You can also use a hexadecimal value in the
format 0xRRGGBB (decimal 30 = hex 0x1e):

cpx.pixels[9] = 0x1e0000

All the pixels can be lit to the same color
value specified using cpx.pixels.fill:

cpx.pixels.fill((30, 0, 0))

To turn off all pixels, set them to (0, 0, 0):

cpx.pixels.fill((0, 0, 0))

Set NeoPixel
brightness

Set the brightness of all pixels (from 0.0 to
1.0):

cpx.pixels.brightness = 0.3

Pads A1 through A7
being touched

The touch pads are around the edge of the
board.

if cpx.touch_A1:

 print('Touched pad A1')

Change A1 to A2, A3, A4, A5, A6, A7 for other
pads.

Speci
al

PyC
on 2

019

Pre
vi

ew

123COdING WITH CIRCUITPyTHON

ACTION CPX LIBRARY USAGE
Set touch pad
sensitivity

Parameter: adjustment (integer)—The desired
threshold increase; higher numbers make the
touch pads less sensitive.

cpx.adjust_touch_threshold(200)

while True:

 if cpx.touch_A1:

 print('Touched pad A1 hard')

CircuitPython API Documentation
you can get the information for using the libraries built
to implement Circuit Playground Express– specific
hardware control functions at http://circuitpython
.readthedocs.io/.

The code that makes up how our program communi-
cates with a predefined set of code written by another
group is often called an applications programming
interface (API). If you like, you can look at the source
code for Circuit Playground Express library functions in
the Adafruit GitHub repository at https://github.com/
adafruit/Adafruit_CircuitPython_CircuitPlayground/
blob/master/adafruit_circuitplayground/express.py.

Go ahead and try some of these functions in your own code. To
get ideas on how others are using CircuitPython on Circuit Play-
ground Express, visit https://learn.adafruit.com/category/express
and look for projects that are using CircuitPython.

http://circuitpython.readthedocs.io/
http://circuitpython.readthedocs.io/
https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground/blob/master/adafruit_circuitplayground/express.py
https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground/blob/master/adafruit_circuitplayground/express.py
https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground/blob/master/adafruit_circuitplayground/express.py
https://learn.adafruit.com/category/express

Speci
al

PyC
on 2

019

Pre
vi

ew

124 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

RUNNING CODE ON EXPRESS VIA
THE REPL

Earlier in the chapter, we used the Serial window in Mu (or Beagle
Term for Chromebook) to view the output from a CircuitPython
file. Within the Serial window, you can press Ctrl-C to get to the
REPL. The REPL is an interactive method for entering commands
into CircuitPython and getting feedback.

First, connect your Circuit Playground Express board to your
computer with a USB cable. Run the Mu editor (Windows/Mac)
or Beagle Term (Chromebook).

If all is good, you will see the editor window shown in Fig-
ure 6-14. Click the REPL button, which has a keyboard icon.

FIGURE 6-14. Start the Serial by clicking the Serial icon at the
top of the Mu screen and press Ctrl-C to get the >>> prompt.

The editor window will split in half (Figure 6-15). The REPL is
in the bottom portion.

The Serial window will show your serial output/input. But it
will also communicate with the board. If you press Ctrl-D, the code
will start again without doing a full board reset (which pressing
the button onboard does).

Speci
al

PyC
on 2

019

Pre
vi

ew

125COdING WITH CIRCUITPyTHON

FIGURE 6-15. The Serial window at the bottom of Mu

If you press any other keyboard key, you enter the REPL itself
(Figure 6-16). Now any commands you type into the window will
be interpreted as CircuitPython commands.

FIGURE 6-16. Typing CircuitPython commands into the REPl

If you would like to import a library (Figure 6-17), you can do
so first and then you can use library functions after that.

FIGURE 6-17. Importing a library in the REPl

Speci
al

PyC
on 2

019

Pre
vi

ew

126 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The code you type is interactive, but there is no mechanism to
save your code. This is why writing code in a text editor is best for
code you will be changing.

WRAP-UP

CircuitPython provides a great way to program Circuit Playground
Express using a programming language gaining in popularity.
 CircuitPython also exposes additional functionality on Circuit
Playground Express, including the ability to read and write files
placed on the onboard flash memory.

You can also type CircuitPython commands into the REPL if
you need to perform a short list of actions.

In the next chapter, some of the more advanced uses of
 CircuitPython for Circuit Playground Express will be covered.

CHAPTER QUESTIONS

 1. What is an interpreted computer language?

 2. In MakeCode, the web interface places a binary UF2 file onto
Circuit Playground Express when the download button is
used. How is code placed onto Circuit Playground Express
in CircuitPython, and where is the mechanism to turn code
into binary machine commands?

 3. What is the CircuitPython equivalent command to the
MakeCode forever loop?

 4. Which CircuitPython function outputs information from
Circuit Playground Express to the connected computer?

Speci
al

PyC
on 2

019

Pre
vi

ew

Troubleshooting

Running into problems and solving them is a defining part of
the Maker experience. This appendix will help you resolve

many common issues you may face when working with Circuit
Playground Express.

Most issues fall into the following categories:

 * Cable issues

 * Connectivity issues

 * Software issues

 * Common library problems

 * Error messages

 * Usage issues

 * Manufacturer support

A

Speci
al

PyC
on 2

019

Pre
vi

ew

208 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

USB CABLE AND POWER ISSUES

NOTE Many Circuit Playground Express issues are
ultimately traced to a bad USB cable or a power issue.

To get an older USB Micro-B cable, you may scrounge in a box
of old cables to find something that works. This approach does
not always get you the reliable cable you need. Problems you may
encounter include the followinsg:

 * Some USB Micro-B cables have only power wires and no sig-
nal wires (they were designed for charging devices only).

 * The cable connections are broken or intermittent, due to
flexing (often at one end or the other). This can happen if
the cable was heavily used.

 * The wire gauge of the cable is insufficient (an uncommon
issue, but it might happen with smaller or more inexpensive
cables, often sourced from discount suppliers).

 * A connector is cracked, dirty, or broken inside.

With power, be sure the green “On” LED is steadily green at all
times. With data, you can go into Microsoft MakeCode and create
a small test program and see whether Circuit Playground Express
will load the code and execute it. Using MakeCode is simplest at
this point since it requires no external software other than a web
browser and the website https://makecode.adafruit.com/. If you do
not have Internet connectivity, you can code simple programs in
CircuitPython or Arduino to accomplish a similar result.

You may think, “This cable works for my phone—it should be
good.” However, the phone may not use the data wires per stan-
dard USB specifications, or it may have only power wires. That the

https://makecode.adafruit.com/

Speci
al

PyC
on 2

019

Pre
vi

ew

209TROUBlESHOOTING

cable works for a phone is not a sufficient indication that the cable
will work 100 percent in Circuit Playground projects.

Here are some power troubleshooting steps:

 1. Check your connections and USB port to make sure that
everything connects well.

 2. If there is a problem, try swapping the cable for a thicker,
more substantial one, or consider purchasing a new one.

 3. As a final check, disconnect the USB cable and connect your
Circuit Playground Express to external power. You have
three choices:

 * Connect a charged LiPo battery to the JST battery con-
nector opposite the USB connector.

 * Use a “Phone Rescue” battery, the type that uses a
rechargeable battery and a USB-to-micro-B cable, often
to provide extra power to a mobile phone or tablet.

 * Adafruit sells a battery pack taking three AAA cells and
provides a battery connector suitable for Circuit Play-
ground Express (Adafruit product # 727). Be sure the
on-off switch is in the on position.

Buying a good, substantial cable (Adafruit #2008 or similar)
from a local shop or reputable online supplier will remedy many
issues.

If at this point you have tried to power the board using mul-
tiple methods and the power On LED will not glow green and the
board appears dead, see the section “Manufacturer Support,” later
in this appendix.

If you plugged the board in and there was a flash and now it
appears dead, wait about 10 minutes and try again with all exter-
nal connections removed. There could have been a short circuit if
metal touched bridged pads on the bottom of the board.

Speci
al

PyC
on 2

019

Pre
vi

ew

210 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

At this point, if you apply proper power and you do not get a
green On LED next to the USB port, Circuit Playground Express
may be “dead.” It can happen to electronics, especially if they are
treated poorly. If your Circuit Playground Express is new, contact
the manufacturer. If the board has been working for a while and
you know you did something to make it no longer work, you may
need to get another Circuit Playground Express. It happens at
times—it is part of the experimentation process.

CONNECTIVITY ISSUES

Circuit Playground Express may have problems talking to a larger
computer used to program the device. First review the “USB Cable
and Power Issues” section prior to diagnosing connectivity issues
to ensure the problem is not power or cable related.

Problems with connectivity include the following:

 * Intermittent communications on USB 3 ports on computers
(USB 3 connectors often have blue plastic inside them)

 * Compatibility issues on USB ports on some versions of the
Linux operating system

 * USB ports not recognizing Circuit Playground Express

Connectivity problems generally do not result in error mes-
sages. Look at these possible situations:

General communications: Is your USB cable connected to
a USB 3 port?

Reconnect your Circuit Playground Express to a USB 2 port
if you have one available. If you are using a USB 2 hub, try to
plug into the main port and not the hub. If you use a hub, a
powered hub would be better to ensure the current available
is enough for your project.

Speci
al

PyC
on 2

019

Pre
vi

ew

211TROUBlESHOOTING

I get the green power LED, but my Circuit Playground
Express appears to not communicate in any way; my
program is not loaded.

Check the “USB Cable and Power Issues” section.

I cannot find Circuit Playground Express in the list of
devices in Windows.

In Windows, Circuit Playground Express shows up under
the “Unspecified” category of devices (Figure A-1). In Device
Manager, it is under Ports (COM & LPT) as a USB Serial
Device, with the Windows communications port listed in
parentheses (Figure A-2).

FIGURE A-1. Circuit Playground Express listed in Windows 10
devices and Printers section of Control Panel

Speci
al

PyC
on 2

019

Pre
vi

ew

212 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE A-2. Windows Control Panel device Manager listing Cir-
cuit Playground Express as a USB Serial device (COM10 here)

The COM port may be numbered differently depending on
the port your Circuit Playground Express is plugged into.

I’m using VMware [or another virtual machine program]

and I’m having issues.

Some VM programs have problems connecting to “real”
computer USB ports. This is not a problem limited to Circuit
Playground Express but applies to any USB device. See the
VMware or other software forums for USB-specific advice.

Both Microsoft MakeCode and CircuitPython will not work

with my Circuit Playground.

Check that you have Circuit Playground Express. The differ-
ence between the Express and the Circuit Playground Classic

Speci
al

PyC
on 2

019

Pre
vi

ew

213TROUBlESHOOTING

is discussed in Chapter 1. Circuit Playground Classic does
not run MakeCode or CircuitPython.

My Circuit Playground Express worked when I first got it,

but it is acting up now. What could be the problem?

First, check your power connections; if they are not good,
correct them. Next, if you have connected external com-
ponents, your circuit could be electrically problematic or
miswired. Remove any connections and try to load a basic
Blink sketch in one of the programming languages to test it
out. If it works outside your project, check your project con-
nections. If the power On light does not come on, check the
“USB Cable and Power Issues” section.

Can I charge a LiPo rechargeable battery to power my

Circuit Playground Express?

You can use a LiPo battery for Circuit Playground Express,
but note the board cannot recharge the LiPo if it’s plugged
into a USB port. Unplug the battery from your Circuit Play-
ground Express and charge the battery with a circuit board
specifically designed to recharge the battery safely. Adafruit
sells several types of LiPo recharging boards; product #s
1304 and 1904 work well at a low cost. The size of the LiPo
battery will determine how long the battery will last—the
larger the battery, the longer it will power the board. You can
save power in a project by using NeoPixels sparingly. Con-
sider using the slide switch to programmatically “turn off”
the NeoPixels.

Speci
al

PyC
on 2

019

Pre
vi

ew

214 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

CIRCUITPYTHON ISSUES

I edit my program and copy it to the CIRCUITPY drive

but Circuit Playground Express doesn’t behave as if it

recognizes the code.

The CircuitPython file you copy over to run on Circuit Play-
ground Express should always be called code.py. This is so
that the Python interpreter knows the name of the code you
want to run.

If you use a name like mycoolprog.py, the board will not know
that file is the code you wish to run. Feel free to use a more
descriptive name on your backup storage device copies—for
example, music-on-tilt.py.

There are four options for filenames for the code the
board will run: code.txt, code.py, main.txt, and main.py.
 CircuitPython looks for those files, in that order, and then
runs the first one it finds.

Adafruit highly suggests that you use the filename code.py.

If your program doesn’t seem to be updating as you work,
make sure you haven’t created another code file that’s being
read instead of the one you’re working on.

My CircuitPython program cannot find the libraries/

modules it needs to work.

CircuitPython looks for library code in the subdirectory
/lib on the onboard flash drive. Go to Chapter 6 to review
the process to copy all of the Adafruit CircuitPython librar-
ies into /lib. The libraries use approximately 400KB of
space. Even with all Adafruit libraries loaded into /lib, there
should be plenty of room for other code on the CIRCUITPY
drive. See Chapter 6 for more details on installing the Ada-
fruit CircuitPython libraries.

Speci
al

PyC
on 2

019

Pre
vi

ew

215TROUBlESHOOTING

I plug in the Circuit Playground Express and I get a

CIRCUITPY drive. But I cannot get the CircuitPython

code.py to copy over or run when it should.

Double-check if you are using the modified boot.py for
writing files listed in Chapter 7. If that code is running,
first move the slide switch back to file mode. You can then
rename boot.py to boot-py.old on the CIRCUITPY drive and
press Reset to get the flash drive back to standard operation.

If you have a file on your Circuit Playground Express named
code.txt, run it instead of code.py. Rename or delete code.txt
and ensure your code is named code.py.

Finally, in a rare event, the flash chip may have an issue.
Follow these steps to erase the flash chip and enable normal
operation:

 1. Type this short program and save it to the CIRCUITPY
drive as code.py:

import storage storage.erase_filesystem()

 2. Click the Reset button on the board to ensure the code
is run.

 3. Now see if you can copy a CircuitPython program of your
choice to the board and have it run.

If you are still having issues, follow the instructions in Chap-
ter 6 on reinstalling the latest version of CircuitPython.

ARDUINO IDE ISSUES

At this point you have gone through the connectivity issues, and
everything seems to be working. But you appear to be having
errors in the Arduino IDE, either during the compile/verify stage
or during upload.

Speci
al

PyC
on 2

019

Pre
vi

ew

216 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

I get several errors when I try to upload a program from

the Arduino IDE.

Make sure you’ve selected Circuit Playground Express in the
Tools F Board menu and have selected the proper serial
port in Tools F Port. If you switch back to another Ardui-
no-compatible board, change the settings appropriately.

COMMON ARDUINO LIBRARY PROBLEMS

There are many problems you can have with using libraries. The
most common library-related error messages take the form “XXXX
does not name a type” or “YYYY not declared in this scope.” They
mean that the compiler could not find the library. This can be due
to any of the following causes:

The library is not installed.

See the steps in Chapter 6 on how to install a library correctly.

Arduino cannot find the library folder.

The IDE will find standard libraries and libraries installed
only in the sketch libraries folder.

The specific library folder must be at the top level of the
libraries folder. If you put it in a subfolder, the IDE will not
find it.

You do not have a “Sketchbook” folder.

It is there, but on a Windows or macOS machine it is named
Arduino (on Linux it is named Sketchbook).

A library is incomplete.

You must download and install the entire library. Do not
omit or alter the names of any files inside the libraries
folder.

Speci
al

PyC
on 2

019

Pre
vi

ew

217TROUBlESHOOTING

A folder name is wrong.

The IDE will not load files with certain characters in the
name. Unfortunately, it does not like the dashes in the ZIP
filenames generated by GitHub. When you unzip the file,
rename the folder so that it does not contain any illegal char-
acters. Simply replacing each dash (-) with an underscore
(_) usually works. If the folder has the word master on the
end (usually preceded by a dash), remove that also. The best
method to see what the library name should be is to look at
the sample code to see what the sample expects the library
name to look like.

The library name is spelled incorrectly.

The name specified in the #include line of your sketch must
match exactly (including capitalization!) the name in the
library. If it does not match exactly, the IDE will not be able
to find it. The example sketches included with the library will
have the correct spelling. Just cut and paste from there to
avoid typographical errors.

You have a wrong version of a library or multiple copies of

the same library in accessible folders.

If you have multiple versions of a library, the IDE will try
to load all of them. This will result in compiler errors. It is
not enough to simply rename the library folder; it must be
moved outside of the sketchbook libraries folder so the IDE
will not try to load it.

One library depends on another library.

Some libraries are dependent on other libraries. For exam-
ple, most of the Adafruit graphic display libraries are depen-
dent on the Adafruit-GFX library. You must have the GFX
library installed to use the dependent libraries. This is true

Speci
al

PyC
on 2

019

Pre
vi

ew

218 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

as well for libraries that use I2C that also expect the Wire
library.

The IDE needs to be restarted.

The IDE searches for libraries at startup. You must shut
down all running copies of the IDE and restart before it will
recognize a newly installed library.

I found a wonderful Arduino library that does what I need,

but when I try to use it on my Circuit Playground Express,

I get errors. What can I do?

The library you found was probably coded for other micro-
controllers. Those libraries might use large memory spaces
or hardware in other microcontrollers, which may not work
on Circuit Playground Express. If you understand how the
library code works, you may be able to fix some errors your-
self. Performing a Google search for the library name may
produce pages where others encountered the same circum-
stance and recoded the library.

Does a library I found on the Internet work with Circuit

Playground Express?

Because there are hundreds of libraries out there written by
all sorts of people, it may or may not work. Many libraries
expect an Arduino Uno and not the larger processor on Cir-
cuit Playground Express. But it doesn’t hurt to try—see the
previous question to proceed.

ERROR MESSAGES

Error messages may fall into the general categories listed here.

Speci
al

PyC
on 2

019

Pre
vi

ew

219TROUBlESHOOTING

Arduino Compilation Issues

Advanced: Can I write code that will compile one way

for Circuit Playground and another for Circuit Playground

Express in Arduino?

Yes, the Arduino IDE internal preprocessor provides separate
definitions for the boards that can be tested. Circuit Play-
ground Classic can be tested using AVR; see the following
sample code:

#ifdef __AVR__ // Circuit Playground 'classic'
#include "utility/CPlay_CapacitiveSensor.h"
#else
#include "utility/Adafruit_CPlay_FreeTouch.h"
#include "utility/IRLibCPE.h"
#endif

Arduino Upload Errors
Be sure you have done the following:

 1. Ensure you have a known good USB cable with both power
and data lines.

 2. Set the Tools F Board menu to Circuit Playground Express.

 3. Ensure Tools F Port is set to the communications port that
your operating system assigns when you plug in the board.
Often the port will say “Circuit Playground Express” next to
it, but it might not if things are being balky.

 4. If there are still issues, press the Reset button to see if the
Arduino IDE will recognize the board.

The Arduino Serial Monitor
While using Arduino, you should use the Serial.print and
Serial.println functions to provide feedback in the Arduino serial
monitor as to what the board is doing while coding and debug-
ging. Select Tools F Serial Monitor to see the output (unlike Mu,

Speci
al

PyC
on 2

019

Pre
vi

ew

220 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

the output goes to a separate window that you must specifically
open after the program is running). The Serial.print statements
can later be commented out for a final “ready to use” program.

USAGE ISSUES

You may encounter the following issues while using Circuit Play-
ground Express.

Can other pads besides A1, A2, A3, A4, A5, A6, and A7 do

capacitive touch? I would like to have more capacitive

touch inputs.

Unfortunately, those are the only pads that work with capac-
itive touch. A0 does not “do” touch, and neither do the other
pads. Consider using two Circuit Playground Express boards
to add to the number of touchpads. Adafruit sells capacitive
touch expansion boards, but the coding would be complex.
It’s best to use multiple Circuit Playground Express boards.

Windows 7 (or Windows 8) is not recognizing the board.

See Chapter 2 to learn how to install drivers for Windows 7
and 8. Windows 10, macOS, and Linux do not need drivers.

I would like to try using the Arduino IDE in Linux. What are

the pitfalls I need to look out for?

The software may need access to the USB port, but this is
controlled by root. You may need to set the USB port for
dial-out. Check the Adafruit support forums for Linux issues
specific to Circuit Playground Express at https://forums
.adafruit.com/viewforum.php?f=58.

https://forums.adafruit.com/viewforum.php?f=58
https://forums.adafruit.com/viewforum.php?f=58

Speci
al

PyC
on 2

019

Pre
vi

ew

221TROUBlESHOOTING

Will a Circuit Playground Express interface to the

hardware I have?

The answer is possibly. Two factors are involved: voltage
compatibility and software support.

The input and output pads for Circuit Playground Express
are 3.3 volts. The external circuitry should work with a dig-
ital output of 3.3 volts. External circuitry should never put
more than 3.3 volts on an input/output pin because this
might damage the board (5 volts on the USB connector is
fine, though).

Depending on the function of an external circuit, code will
be required to make the circuit function. Sometimes code is
easy, or it could be quite complex. It is beyond the scope of
this Getting Started book to discuss all the external circuits
that can be connected and programmed with the board. You
may have to experiment and read up on the subject in other
resources.

Are the Circuit Playground Express EAGLE CAD circuit

board (PCB) layout files available?

Yes; see https://github.com/adafruit/Adafruit-Circuit-
Playground-Express-PCB.

MANUFACTURER SUPPORT

Adafruit Industries makes customer service and satisfaction a
cornerstone of its business. If you still have problems after trou-
bleshooting, you can visit the Adafruit forums (https://forums
.adafruit.com/) to describe your situation. The helpful forum mod-
erators will be able to assist with additional troubleshooting.

You’ll also find many tutorials on using Circuit Playground
Express and other Adafruit products at https://learn.adafruit.com/.

https://github.com/adafruit/Adafruit-Circuit-Playground-Express-PCB
https://github.com/adafruit/Adafruit-Circuit-Playground-Express-PCB
https://forums.adafruit.com/
https://forums.adafruit.com/
https://learn.adafruit.com/

Speci
al

PyC
on 2

019

Pre
vi

ew

222 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

After posting to the Adafruit forum, if it is evident your board
is defective, Adafruit may replace it (at their discretion). Treat
your electronics with care and they should last nearly forever. Just
don’t spill your drink on it or take it to Burning Man, and then
suspect it was a factory fault.

Speci
al

PyC
on 2

019

Pre
vi

ew

Reference
Materials

The main subjects of this book—how to write code in Micro-
soft MakeCode, how to use CircuitPython, and how to use

the Arduino IDE—could each easily be the basis for its own full-
length book. In this Getting Started series book, we explored each
subject in the space available.

In the following sections, other resources for information are
listed for further study. Also consider that new information on the
subjects in this book will be published after this book goes to print.
Using a search engine of your choice can help if you have exhausted
the information in this book and the references that follow.

ON THE INTERNET

The Internet provides a wealth of information. All of the refer-
ences noted are free to view. Adafruit Industries materials are
generally licensed so that you can use the materials any way you
want (with attribution).

B

Speci
al

PyC
on 2

019

Pre
vi

ew

224 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Circuit Playground Express

 * Adafruit Circuit Playground Express Guide: https://learn
.adafruit.com/adafruit-circuit-playground-express

 * Adafruit Customer Support forums: https://forums.adafruit.com/

Microsoft MakeCode

 * Microsoft MakeCode for Circuit Playground Express: https://
makecode.adafruit.com

 * The main Microsoft MakeCode site: https://makecode.com

 * Adafruit Learn Microsoft MakeCode: https://learn.adafruit
.com/makecode

 * Information on the UF2 file format: https://github.com/
microsoft/uf2

Python and CircuitPython

 * Adafruit Welcome to CircuitPython! https://learn.adafruit
.com/welcome-to-circuitpython

 * Adafruit CircuitPython Essentials: https://learn.adafruit
.com/circuitpython-essentials

 * The Python Software Foundation, Python for Beginners:
www.python.org/about/gettingstarted/

 * The Beginners Guide for Programmers: https://wiki.python
.org/moin/BeginnersGuide/Programmers

 * CircuitPython API Reference: http://circuitpython
.readthedocs.io/en/latest/

 * A list of CircuitPython resources maintained by Adafruit:
https://github.com/adafruit/awesome-circuitpython

https://learn.adafruit.com/adafruit-circuit-playground-express
https://learn.adafruit.com/adafruit-circuit-playground-express
https://forums.adafruit.com/
https://makecode.adafruit.com
https://makecode.adafruit.com
https://makecode.com
https://learn.adafruit.com/makecode
https://learn.adafruit.com/makecode
https://github.com/microsoft/uf2
https://github.com/microsoft/uf2
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/circuitpython-essentials
https://learn.adafruit.com/circuitpython-essentials
www.python.org/about/gettingstarted/
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/BeginnersGuide/Programmers
http://circuitpython.readthedocs.io/en/latest/
http://circuitpython.readthedocs.io/en/latest/
https://github.com/adafruit/awesome-circuitpython

Speci
al

PyC
on 2

019

Pre
vi

ew

225REFERENCE MATERIAlS

Arduino

 * Primary Arduino website: www.arduino.cc

 * Arduino Language Reference: www.arduino.cc/reference/en/

 * Arduino Tutorials: www.arduino.cc/en/Tutorial/

 * C Tutorial: www.tutorialspoint.com/cprogramming/index.htm

 * Adafruit Circuit Playground Express Guide: https://learn
.adafruit.com/adafruit-circuit-playground-express

 * Adafruit Ladyada’s Learn Arduino: https://learn.adafruit
.com/ladyadas-learn-arduino-lesson-number-0

Chrome OS

* Caret Text Editor: https://chrome.google.com/webstore/detail/
caret/fljalecfjciodhpcledpamjachpmelml?hl=en

* Beagle Term Terminal Emulator: https://chrome.google.com/
webstore/detail/beagle-term/gkdofhllgfohlddimiiildbgoggdpoea
?hl=en

* YouTube video on using a Chromebook with Circuit Play-
ground Express: www.youtube.com/watch?v=B-PfKv7DCbc

PUBLICATIONS

The following resources may help you learn some of the concepts
in this book:

* Getting Started with Arduino, Second Edition, by Massimo
Banzi (co-creator of Arduino)

 * Programming Arduino: Getting Started with Sketches,
by Simon Monk

 * Once you’ve grasped the basics of setting up the Ardu-
ino IDE, check out books and other resources on creating

https://www.arduino.cc
www.arduino.cc/reference/en/
www.arduino.cc/en/Tutorial/
www.tutorialspoint.com/cprogramming/index.htm
https://learn.adafruit.com/adafruit-circuit-playground-express
https://learn.adafruit.com/adafruit-circuit-playground-express
https://learn.adafruit.com/ladyadas-learn-arduino-lesson-number-0
https://learn.adafruit.com/ladyadas-learn-arduino-lesson-number-0
https://chrome.google.com/webstore/detail/caret/fljalecfjciodhpcledpamjachpmelml?hl=en
https://chrome.google.com/webstore/detail/caret/fljalecfjciodhpcledpamjachpmelml?hl=en
https://chrome.google.com/webstore/detail/beagle-term/gkdofhllgfohlddimiiildbgoggdpoea?hl=en
https://chrome.google.com/webstore/detail/beagle-term/gkdofhllgfohlddimiiildbgoggdpoea?hl=en
https://chrome.google.com/webstore/detail/beagle-term/gkdofhllgfohlddimiiildbgoggdpoea?hl=en
www.youtube.com/watch?v=B-PfKv7DCbc

Speci
al

PyC
on 2

019

Pre
vi

ew

226 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

projects based on Arduino. Browsing your favorite technical
bookstore will provide a wide range of books and magazines.

 * There are many books on learning Python, but it is very
difficult to recommend any one title as a companion for a
Getting Started book. Most Python books are written for
more experienced programmers or extensively use concepts
such as object-oriented language constructs unnecessary for
beginners.

Speci
al

PyC
on 2

019

Pre
vi

ew

About the Author

Engineer and Maker Mike Barela is currently a consultant for
Adafruit Industries, LLC. He recently retired as a senior For-

eign Service officer and security engineer for the U.S. Department
of State. Mike is a graduate of Whitman College (mathematics/
physics) and the California Institute of Technology (electrical
engineering). He has also worked at Hewlett-Packard, the Caltech/
NASA Jet Propulsion Laboratory, and Boeing. An avid electronics
enthusiast, he started with a workbench and Radio Shack parts in
high school. Mike is the author of the book Make: Getting Started
with Adafruit Trinket as well as tutorials on the Adafruit Learning
System at https://learn.adafruit.com/.

Speci
al

PyC
on 2

019

Pre
vi

ew

To purchase this book in its entirety, please visit

https://amzn.to/2CMD3vZ

https://amzn.to/2CMD3vZ

	Blank Page

