import datetime as dt import soundfile as sf from nemo.collections.tts.models.base import SpectrogramGenerator, Vocoder # Download and load the pretrained tacotron2 model spec_gen = SpectrogramGenerator.from_pretrained("tts_en_tacotron2") # Download and load the pretrained waveglow model vocoder = Vocoder.from_pretrained("tts_waveglow_88m") #vocoder = Vocoder.from_pretrained("tts_squeezewave") # All spectrogram generators start by parsing raw strings to a tokenized version of the string print("starting at {}".format(dt.datetime.now())) parsed = spec_gen.parse("How will this squeeze model sound?") # They then take the tokenized string and produce a spectrogram spectrogram = spec_gen.generate_spectrogram(tokens=parsed) # Finally, a vocoder converts the spectrogram to audio audio = vocoder.convert_spectrogram_to_audio(spec=spectrogram) print("Finished encoding {}".format(dt.datetime.now())) # Save the audio to disk in a file called speech.wav sf.write("squeeze2.wav", audio.to('cpu').numpy().T, 22050) print("Finished write at {}".format(dt.datetime.now()))