from turtle import pd import joblib as jl from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier def main(): # Use iris dataset iris = load_iris() X, y = iris.data, iris.target X_train, X_test, y_train, y_test = train_test_split(X, y) clr = RandomForestClassifier() # Fit clr.fit(X_train, y_train) # Serialize the classifier to pickle file jl.dump(clr, "./output/model.pkl", compress=9) if __name__ == "__main__": print("Building iris model...") main() print("Model trained and dumped as pickle file.")