import tensorflow as tf from tensorflow import keras import pandas as pd import numpy as np train_df = pd.read_csv('./data/train.csv') np.random.shuffle(train_df.values) print(train_df.head()) model = keras.Sequential([ keras.layers.Dense(256, input_shape=(2,), activation='relu'), keras.layers.Dropout(0.4), keras.layers.Dense(128, activation='relu'), keras.layers.Dropout(0.4), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(2, activation='sigmoid')]) model.compile(optimizer='adam', loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) x = np.column_stack((train_df.x.values, train_df.y.values)) model.fit(x, train_df.color.values, batch_size=32, epochs=20) test_df = pd.read_csv('./data/test.csv') test_x = np.column_stack((test_df.x.values, test_df.y.values)) print("EVALUATION") model.evaluate(test_x, test_df.color.values)