You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
108 lines
3.0 KiB
Python
108 lines
3.0 KiB
Python
import os
|
|
from threading import Lock
|
|
from typing import BinaryIO
|
|
|
|
import ffmpeg
|
|
import numpy as np
|
|
import torch
|
|
import whisper
|
|
from fastapi import FastAPI, File, UploadFile
|
|
from fastapi.responses import RedirectResponse
|
|
|
|
from . import __version__
|
|
|
|
# TODO use pydantic config
|
|
model_name = os.getenv("ASR_MODEL", "base")
|
|
if torch.cuda.is_available():
|
|
model = whisper.load_model(model_name).cuda()
|
|
else:
|
|
model = whisper.load_model(model_name)
|
|
model_lock = Lock()
|
|
|
|
|
|
# TODO use pydantic config
|
|
SAMPLE_RATE = 16000
|
|
|
|
|
|
# TODO move transcribe to a modeling worker
|
|
def transcribe(
|
|
audio,
|
|
# task: Union[str, None],
|
|
# language: Union[str, None],
|
|
# initial_prompt: Union[str, None],
|
|
):
|
|
# options_dict = {"task" : task}
|
|
# if language:
|
|
# options_dict["language"] = language
|
|
# if initial_prompt:
|
|
# options_dict["initial_prompt"] = initial_prompt
|
|
with model_lock:
|
|
# result = model.transcribe(audio, **options_dict)
|
|
result = model.transcribe(audio)
|
|
|
|
return result
|
|
|
|
|
|
# TODO probably can offload this on a worker queue too
|
|
def load_audio(file: BinaryIO, encode=True, sr: int = SAMPLE_RATE):
|
|
"""
|
|
Open an audio file object and read as mono waveform, resampling as necessary.
|
|
Modified from https://github.com/openai/whisper/blob/main/whisper/audio.py
|
|
to accept a file object
|
|
|
|
Parameters
|
|
----------
|
|
file: BinaryIO
|
|
The audio file like object
|
|
encode: Boolean
|
|
If true, encode audio stream to WAV before sending to whisper
|
|
sr: int
|
|
The sample rate to resample the audio if necessary
|
|
Returns
|
|
-------
|
|
A NumPy array containing the audio waveform, in float32 dtype.
|
|
"""
|
|
if encode:
|
|
try:
|
|
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
|
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
|
out, _ = (
|
|
ffmpeg.input("pipe:", threads=0)
|
|
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
|
|
.run(
|
|
cmd="ffmpeg",
|
|
capture_stdout=True,
|
|
capture_stderr=True,
|
|
input=file.read(),
|
|
)
|
|
)
|
|
except ffmpeg.Error as e:
|
|
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
|
else:
|
|
out = file.read()
|
|
|
|
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
|
|
|
|
|
app = FastAPI(
|
|
title="Local Whisper",
|
|
description="Making OpenAPI's Open Whisper available via ReST API locally.",
|
|
version=__version__,
|
|
swagger_ui_parameters={"defaultModelsExpandDepth": -1},
|
|
license_info={
|
|
"name": "MIT License",
|
|
},
|
|
)
|
|
|
|
|
|
@app.get("/", response_class=RedirectResponse, include_in_schema=False)
|
|
async def index():
|
|
return "/docs"
|
|
|
|
|
|
@app.post("/audio/transcriptions")
|
|
async def asr(file: UploadFile = File(...)):
|
|
if file.content_type.startswith("audio/"):
|
|
transcription = transcribe(load_audio(file.file))
|
|
return {"text": transcription["text"]}
|