Semi-working cmdline stable-vicuna interaction

drew/stable-vicuna
Drew Bednar 2 years ago
parent 5be80d49c2
commit 1bed5efdf7

@ -1,6 +1,26 @@
def main(): import click
print("Hey this is the cli application")
from . import run_stable_vicuna
@click.group()
def cli():
pass
@cli.command()
@click.option(
"--model-dir",
type=click.Path(exists=True, file_okay=False, dir_okay=True),
envvar="SAVANT_MODEL_DIR",
default="~/models",
show_default=True,
help="The path to a directory containing a hugging face Stable-Vicuna model.",
)
def stable_vicuna(model_dir):
"""Runs a Stable Vicuna CLI prompt."""
run_stable_vicuna.main(model_dir=model_dir)
if __name__ == "__main__": if __name__ == "__main__":
main() cli()

@ -0,0 +1,74 @@
import textwrap
import colorama
from transformers import LlamaForCausalLM, LlamaTokenizer
from transformers import logging as t_logging
from transformers import pipeline
# Configure logging level for transformers library
t_logging.logging.set_verbosity_info()
# Utility Functions
def get_prompt(human_prompt):
prompt_template = f"### Human: {human_prompt} \n### Assistant:"
return prompt_template
def remove_human_text(text):
return text.split("### Human:", 1)[0]
def parse_text(data):
for item in data:
text = item["generated_text"]
assistant_text_index = text.find("### Assistant:")
if assistant_text_index != -1:
assistant_text = text[
assistant_text_index + len("### Assistant:") :
].strip()
assistant_text = remove_human_text(assistant_text)
wrapped_text = textwrap.fill(assistant_text, width=100)
print(wrapped_text)
# Reasoning question
EXAMPLE_REASONING = "Answer the following question by reasoning step by step. \
The cafeteria had 22 apples. If they used 20 for lunch, and bought 6 more, \
how many apple do they have?"
# User interface
def main(model_dir):
# Model loading for inference
tokenizer = LlamaTokenizer.from_pretrained(model_dir)
base_model = LlamaForCausalLM.from_pretrained(
model_dir,
load_in_8bit=True,
device_map="auto",
)
pipe = pipeline(
"text-generation",
model=base_model,
tokenizer=tokenizer,
max_length=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15,
)
print("Reading for inference!")
while True:
input_prompt = ""
input_prompt = input("USER:")
print(colorama.Style.DIM + f"You are submitting: {input_prompt}")
print(colorama.Style.RESET_ALL)
raw_output = pipe(get_prompt(input_prompt))
parse_text(raw_output)
if __name__ == "__main__":
print("Warming up the engines...")
main()

@ -0,0 +1,32 @@
# Invoke tab-completion script to be sourced with Bash shell.
# Known to work on Bash 3.x, untested on 4.x.
_complete_invoke() {
local candidates
# COMP_WORDS contains the entire command string up til now (including
# program name).
# We hand it to Invoke so it can figure out the current context: spit back
# core options, task names, the current task's options, or some combo.
candidates=`invoke --complete -- ${COMP_WORDS[*]}`
# `compgen -W` takes list of valid options & a partial word & spits back
# possible matches. Necessary for any partial word completions (vs
# completions performed when no partial words are present).
#
# $2 is the current word or token being tabbed on, either empty string or a
# partial word, and thus wants to be compgen'd to arrive at some subset of
# our candidate list which actually matches.
#
# COMPREPLY is the list of valid completions handed back to `complete`.
COMPREPLY=( $(compgen -W "${candidates}" -- $2) )
}
# Tell shell builtin to use the above for completing our invocations.
# * -F: use given function name to generate completions.
# * -o default: when function generates no results, use filenames.
# * positional args: program names to complete for.
complete -F _complete_invoke -o default invoke inv
# vim: set ft=sh :

@ -18,7 +18,7 @@ classifiers = [
dynamic = ["version", "dependencies"] dynamic = ["version", "dependencies"]
[project.scripts] [project.scripts]
savant-cli = "chat_savant.cli:main" savant = "chat_savant.cli:cli"
[project.optional-dependencies] [project.optional-dependencies]
whisper = ["openai-whisper"] whisper = ["openai-whisper"]

@ -0,0 +1,9 @@
transformers @ git+https://github.com/huggingface/transformers@849367ccf741d8c58aa88ccfe1d52d8636eaf2b7
bitsandbytes
datasets
loralib
sentencepiece
bitsandbytes
accelerate
langchain
colorama

@ -1,6 +1,227 @@
# #
# This file is autogenerated by pip-compile with Python 3.11 # This file is autogenerated by pip-compile with Python 3.10
# by the following command: # by the following command:
# #
# pip-compile --output-file=requirements.txt requirements.in # pip-compile requirements.in
# #
accelerate==0.18.0
# via -r requirements.in
aiohttp==3.8.4
# via
# datasets
# fsspec
# langchain
aiosignal==1.3.1
# via aiohttp
async-timeout==4.0.2
# via
# aiohttp
# langchain
attrs==23.1.0
# via aiohttp
bitsandbytes==0.38.1
# via -r requirements.in
certifi==2022.12.7
# via requests
charset-normalizer==3.1.0
# via
# aiohttp
# requests
cmake==3.26.3
# via triton
colorama==0.4.6
# via -r requirements.in
dataclasses-json==0.5.7
# via langchain
datasets==2.12.0
# via -r requirements.in
dill==0.3.6
# via
# datasets
# multiprocess
filelock==3.12.0
# via
# huggingface-hub
# torch
# transformers
# triton
frozenlist==1.3.3
# via
# aiohttp
# aiosignal
fsspec[http]==2023.4.0
# via
# datasets
# huggingface-hub
greenlet==2.0.2
# via sqlalchemy
huggingface-hub==0.14.1
# via
# datasets
# transformers
idna==3.4
# via
# requests
# yarl
jinja2==3.1.2
# via torch
langchain==0.0.160
# via -r requirements.in
lit==16.0.3
# via triton
loralib==0.1.1
# via -r requirements.in
markupsafe==2.1.2
# via jinja2
marshmallow==3.19.0
# via
# dataclasses-json
# marshmallow-enum
marshmallow-enum==1.5.1
# via dataclasses-json
mpmath==1.3.0
# via sympy
multidict==6.0.4
# via
# aiohttp
# yarl
multiprocess==0.70.14
# via datasets
mypy-extensions==1.0.0
# via typing-inspect
networkx==3.1
# via torch
numexpr==2.8.4
# via langchain
numpy==1.24.3
# via
# accelerate
# datasets
# langchain
# numexpr
# pandas
# pyarrow
# transformers
nvidia-cublas-cu11==11.10.3.66
# via
# nvidia-cudnn-cu11
# nvidia-cusolver-cu11
# torch
nvidia-cuda-cupti-cu11==11.7.101
# via torch
nvidia-cuda-nvrtc-cu11==11.7.99
# via torch
nvidia-cuda-runtime-cu11==11.7.99
# via torch
nvidia-cudnn-cu11==8.5.0.96
# via torch
nvidia-cufft-cu11==10.9.0.58
# via torch
nvidia-curand-cu11==10.2.10.91
# via torch
nvidia-cusolver-cu11==11.4.0.1
# via torch
nvidia-cusparse-cu11==11.7.4.91
# via torch
nvidia-nccl-cu11==2.14.3
# via torch
nvidia-nvtx-cu11==11.7.91
# via torch
openapi-schema-pydantic==1.2.4
# via langchain
packaging==23.1
# via
# accelerate
# datasets
# huggingface-hub
# marshmallow
# transformers
pandas==2.0.1
# via datasets
psutil==5.9.5
# via accelerate
pyarrow==12.0.0
# via datasets
pydantic==1.10.7
# via
# langchain
# openapi-schema-pydantic
python-dateutil==2.8.2
# via pandas
pytz==2023.3
# via pandas
pyyaml==6.0
# via
# accelerate
# datasets
# huggingface-hub
# langchain
# transformers
regex==2023.5.5
# via transformers
requests==2.30.0
# via
# datasets
# fsspec
# huggingface-hub
# langchain
# responses
# transformers
responses==0.18.0
# via datasets
sentencepiece==0.1.99
# via -r requirements.in
six==1.16.0
# via python-dateutil
sqlalchemy==2.0.12
# via langchain
sympy==1.11.1
# via torch
tenacity==8.2.2
# via langchain
tokenizers==0.13.3
# via transformers
torch==2.0.0
# via
# accelerate
# triton
tqdm==4.65.0
# via
# datasets
# huggingface-hub
# langchain
# transformers
transformers @ git+https://github.com/huggingface/transformers@849367ccf741d8c58aa88ccfe1d52d8636eaf2b7
# via -r requirements.in
triton==2.0.0
# via torch
typing-extensions==4.5.0
# via
# huggingface-hub
# pydantic
# sqlalchemy
# torch
# typing-inspect
typing-inspect==0.8.0
# via dataclasses-json
tzdata==2023.3
# via pandas
urllib3==2.0.2
# via
# requests
# responses
wheel==0.40.0
# via
# nvidia-cublas-cu11
# nvidia-cuda-cupti-cu11
# nvidia-cuda-runtime-cu11
# nvidia-curand-cu11
# nvidia-cusparse-cu11
# nvidia-nvtx-cu11
xxhash==3.2.0
# via datasets
yarl==1.9.2
# via aiohttp
# The following packages are considered to be unsafe in a requirements file:
# setuptools

Loading…
Cancel
Save