Saving sklearn example

master
Drew Bednar 3 years ago
parent a5fc7b5646
commit 94c218ff1d

1
.gitignore vendored

@ -138,3 +138,4 @@ dmypy.json
# Cython debug symbols # Cython debug symbols
cython_debug/ cython_debug/
./*/output

@ -0,0 +1,3 @@
black
flake8
pip-tools

@ -0,0 +1,40 @@
#
# This file is autogenerated by pip-compile with python 3.8
# To update, run:
#
# pip-compile dev-requirements.in
#
black==22.1.0
# via -r dev-requirements.in
click==8.0.4
# via
# black
# pip-tools
flake8==4.0.1
# via -r dev-requirements.in
mccabe==0.6.1
# via flake8
mypy-extensions==0.4.3
# via black
pathspec==0.9.0
# via black
pep517==0.12.0
# via pip-tools
pip-tools==6.5.1
# via -r dev-requirements.in
platformdirs==2.5.1
# via black
pycodestyle==2.8.0
# via flake8
pyflakes==2.4.0
# via flake8
tomli==2.0.1
# via black
typing-extensions==4.1.1
# via black
wheel==0.37.1
# via pip-tools
# The following packages are considered to be unsafe in a requirements file:
# pip
# setuptools

@ -0,0 +1,7 @@
joblib
numpy
onnx
onnxruntime
opencv-python
skl2onnx
sklearn

@ -0,0 +1,55 @@
#
# This file is autogenerated by pip-compile with python 3.8
# To update, run:
#
# pip-compile requirements.in
#
flatbuffers==2.0
# via onnxruntime
joblib==1.1.0
# via
# -r requirements.in
# scikit-learn
numpy==1.22.3
# via
# -r requirements.in
# onnx
# onnxconverter-common
# onnxruntime
# opencv-python
# scikit-learn
# scipy
# skl2onnx
onnx==1.11.0
# via
# -r requirements.in
# onnxconverter-common
# skl2onnx
onnxconverter-common==1.9.0
# via skl2onnx
onnxruntime==1.10.0
# via -r requirements.in
opencv-python==4.5.5.64
# via -r requirements.in
protobuf==3.19.4
# via
# onnx
# onnxconverter-common
# onnxruntime
# skl2onnx
scikit-learn==1.0.2
# via
# skl2onnx
# sklearn
scipy==1.8.0
# via
# scikit-learn
# skl2onnx
skl2onnx==1.11
# via -r requirements.in
sklearn==0.0
# via -r requirements.in
threadpoolctl==3.1.0
# via scikit-learn
typing-extensions==4.1.1
# via onnx

@ -0,0 +1,2 @@
*.pkl
*.onnx

@ -0,0 +1,22 @@
from turtle import pd
import joblib as jl
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
def main():
# Use iris dataset
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)
clr = RandomForestClassifier()
# Fit
clr.fit(X_train, y_train)
# Serialize the classifier to pickle file
jl.dump(clr, "./output/model.pkl", compress=9)
if __name__ == "__main__":
print("Building iris model...")
main()
print("Model trained and dumped as pickle file.")

@ -0,0 +1,27 @@
# sklearn example
This is a simple demo showing the training of Randmon Forest Classifier, serializing it as a pickle file, converting it to an Onnx model, then making inferences using the Onnx model.
## Usage
Train the model
```
python train.py
```
Convert to Onnx
```
```
Make inferences
```
```
## Model
![Model Graph](./img/model_graph.png)

@ -0,0 +1,48 @@
import argparse
import pathlib
import joblib as jl
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
def convert_model_to_onnx(path):
"""Converts the example sklearn classifier to Onnx"""
clr_model = jl.load(path)
# Define Initial Types
initial_type = [("float_input", FloatTensorType([None, 4]))]
onnx_model = convert_sklearn(clr_model, initial_types=initial_type)
return onnx_model
def write_onnx_file(model, output_path):
"""Writes an Onnx model to a desired file location"""
with open(output_path, mode="wb") as f:
f.write(model.SerializeToString())
def main(args):
print(f"Converting {args.model_path} to Onnx")
model = convert_model_to_onnx(args.model_path)
print(f"Writing saving Onnx file to {args.output_path}")
write_onnx_file(model, args.output_path)
print("Done")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Converts a pickled classifier to onnx format"
)
parser.add_argument(
"model_path", type=pathlib.Path, help="Path to classifier pickle file"
)
parser.add_argument(
"-o" "--out",
type=pathlib.Path,
dest="output_path",
default=pathlib.Path("./output/clr_model.onnx"),
help="Path to output Onnx file",
)
args = parser.parse_args()
main(args)

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

@ -0,0 +1,2 @@
*.pkl
*.onnx

@ -0,0 +1,24 @@
from turtle import pd
import joblib as jl
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
def main():
# Use iris dataset
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)
clr = RandomForestClassifier()
# Fit
clr.fit(X_train, y_train)
# Serialize the classifier to pickle file
jl.dump(clr, "./output/model.pkl", compress=9)
if __name__ == "__main__":
print("Building iris model...")
main()
print("Model trained and dumped as pickle file.")
Loading…
Cancel
Save