working two stage build

master
Drew Bednar 2 years ago
parent 9395a1fe9e
commit ddccf118e9

@ -1,10 +1,31 @@
# learn_pyoxidizer # learn_pyoxidizer
# Learning PyOxidizer # Learning PyOxidizer
Repository to learn PyOxidizer Repository to learn PyOxidizer
Example: Example:
``` ```
https://github.com/takov751/Pyoxidizer_example https://github.com/takov751/Pyoxidizer_example
``` ```
## Build
A two stage build is implemented in Docker.
### Build container
Run from repo root.
```
docker build -t pyoxidizer-build:0.22.0 --file ./dockerfiles/Dockerfile.pyoxidizer .
```
This creates our PyOxidizer build environment.
### Building the app
```
docker build -t oxidized_app:0.1.0 --file ./dockerfiles/Dockerfile.oxidized_app .
```

@ -0,0 +1,366 @@
# This file defines how PyOxidizer application building and packaging i
# performed. See PyOxidizer's documentation at
# https://pyoxidizer.readthedocs.io/en/stable/ for details of this
# configuration file format.
# Configuration files consist of functions which define build "targets."
# This function creates a Python executable and installs it in a destination
# directory.
def make_exe():
# Obtain the default PythonDistribution for our build target. We link
# this distribution into our produced executable and extract the Python
# standard library from it.
dist = default_python_distribution()
# This function creates a `PythonPackagingPolicy` instance, which
# influences how executables are built and how resources are added to
# the executable. You can customize the default behavior by assigning
# to attributes and calling functions.
policy = dist.make_python_packaging_policy()
# Enable support for non-classified "file" resources to be added to
# resource collections.
policy.allow_files = True
# Control support for loading Python extensions and other shared libraries
# from memory. This is only supported on Windows and is ignored on other
# platforms.
# policy.allow_in_memory_shared_library_loading = True
# Control whether to generate Python bytecode at various optimization
# levels. The default optimization level used by Python is 0.
# policy.bytecode_optimize_level_zero = True
# policy.bytecode_optimize_level_one = True
# policy.bytecode_optimize_level_two = True
# Package all available Python extensions in the distribution.
# policy.extension_module_filter = "all"
# Package the minimum set of Python extensions in the distribution needed
# to run a Python interpreter. Various functionality from the Python
# standard library won't work with this setting! But it can be used to
# reduce the size of generated executables by omitting unused extensions.
# policy.extension_module_filter = "minimal"
# Package Python extensions in the distribution not having additional
# library dependencies. This will exclude working support for SSL,
# compression formats, and other functionality.
# policy.extension_module_filter = "no-libraries"
# Package Python extensions in the distribution not having a dependency on
# copyleft licensed software like GPL.
# policy.extension_module_filter = "no-copyleft"
# Controls whether the file scanner attempts to classify files and emit
# resource-specific values.
# policy.file_scanner_classify_files = True
# Controls whether `File` instances are emitted by the file scanner.
# policy.file_scanner_emit_files = False
# Controls the `add_include` attribute of "classified" resources
# (`PythonModuleSource`, `PythonPackageResource`, etc).
# policy.include_classified_resources = True
# Toggle whether Python module source code for modules in the Python
# distribution's standard library are included.
# policy.include_distribution_sources = False
# Toggle whether Python package resource files for the Python standard
# library are included.
# policy.include_distribution_resources = False
# Controls the `add_include` attribute of `File` resources.
# policy.include_file_resources = False
# Controls the `add_include` attribute of `PythonModuleSource` not in
# the standard library.
# policy.include_non_distribution_sources = True
# Toggle whether files associated with tests are included.
# policy.include_test = False
# Resources are loaded from "in-memory" or "filesystem-relative" paths.
# The locations to attempt to add resources to are defined by the
# `resources_location` and `resources_location_fallback` attributes.
# The former is the first/primary location to try and the latter is
# an optional fallback.
# Use in-memory location for adding resources by default.
# policy.resources_location = "in-memory"
# Use filesystem-relative location for adding resources by default.
# TODO FIGURE OUT WHY THIS WORKED FOR PSYCOPG3!
# https://pyoxidizer.readthedocs.io/en/stable/pyoxidizer_config_resource_add_attributes.html
policy.resources_location = "filesystem-relative:prefix"
# Attempt to add resources relative to the built binary when
# `resources_location` fails.
# policy.resources_location_fallback = "filesystem-relative:prefix"
# Clear out a fallback resource location.
# policy.resources_location_fallback = None
# Define a preferred Python extension module variant in the Python distribution
# to use.
# policy.set_preferred_extension_module_variant("foo", "bar")
# Configure policy values to classify files as typed resources.
# (This is the default.)
# policy.set_resource_handling_mode("classify")
# Configure policy values to handle files as files and not attempt
# to classify files as specific types.
# policy.set_resource_handling_mode("files")
# This variable defines the configuration of the embedded Python
# interpreter. By default, the interpreter will run a Python REPL
# using settings that are appropriate for an "isolated" run-time
# environment.
#
# The configuration of the embedded Python interpreter can be modified
# by setting attributes on the instance. Some of these are
# documented below.
python_config = dist.make_python_interpreter_config()
# Make the embedded interpreter behave like a `python` process.
# python_config.config_profile = "python"
# Set initial value for `sys.path`. If the string `$ORIGIN` exists in
# a value, it will be expanded to the directory of the built executable.
# python_config.module_search_paths = ["$ORIGIN/lib"]
# Use jemalloc as Python's memory allocator.
# python_config.allocator_backend = "jemalloc"
# Use mimalloc as Python's memory allocator.
# python_config.allocator_backend = "mimalloc"
# Use snmalloc as Python's memory allocator.
# python_config.allocator_backend = "snmalloc"
# Let Python choose which memory allocator to use. (This will likely
# use the malloc()/free() linked into the program.
# python_config.allocator_backend = "default"
# Enable the use of a custom allocator backend with the "raw" memory domain.
# python_config.allocator_raw = True
# Enable the use of a custom allocator backend with the "mem" memory domain.
# python_config.allocator_mem = True
# Enable the use of a custom allocator backend with the "obj" memory domain.
# python_config.allocator_obj = True
# Enable the use of a custom allocator backend with pymalloc's arena
# allocator.
# python_config.allocator_pymalloc_arena = True
# Enable Python memory allocator debug hooks.
# python_config.allocator_debug = True
# Automatically calls `multiprocessing.set_start_method()` with an
# appropriate value when OxidizedFinder imports the `multiprocessing`
# module.
# python_config.multiprocessing_start_method = 'auto'
# Do not call `multiprocessing.set_start_method()` automatically. (This
# is the default behavior of Python applications.)
# python_config.multiprocessing_start_method = 'none'
# Call `multiprocessing.set_start_method()` with explicit values.
# python_config.multiprocessing_start_method = 'fork'
# python_config.multiprocessing_start_method = 'forkserver'
# python_config.multiprocessing_start_method = 'spawn'
# Control whether `oxidized_importer` is the first importer on
# `sys.meta_path`.
# python_config.oxidized_importer = False
# Enable the standard path-based importer which attempts to load
# modules from the filesystem.
# python_config.filesystem_importer = True
# Set `sys.frozen = False`
# python_config.sys_frozen = False
# Set `sys.meipass`
# python_config.sys_meipass = True
# Write files containing loaded modules to the directory specified
# by the given environment variable.
# python_config.write_modules_directory_env = "/tmp/oxidized/loaded_modules"
# Evaluate a string as Python code when the interpreter starts.
#python_config.run_command = "quickemu_watcher.__main__"
# Run a Python module as __main__ when the interpreter starts.
python_config.run_module = "quickemu_watcher"
# Run a Python file when the interpreter starts.
# python_config.run_filename = "test"
# Produce a PythonExecutable from a Python distribution, embedded
# resources, and other options. The returned object represents the
# standalone executable that will be built.
exe = dist.to_python_executable(
name = "quickemu_watcher",
# If no argument passed, the default `PythonPackagingPolicy` for the
# distribution is used.
packaging_policy = policy,
# If no argument passed, the default `PythonInterpreterConfig` is used.
config = python_config,
)
# Install tcl/tk support files to a specified directory so the `tkinter` Python
# module works.
# exe.tcl_files_path = "lib"
# Never attempt to copy Windows runtime DLLs next to the built executable.
# exe.windows_runtime_dlls_mode = "never"
# Copy Windows runtime DLLs next to the built executable when they can be
# located.
# exe.windows_runtime_dlls_mode = "when-present"
# Copy Windows runtime DLLs next to the build executable and error if this
# cannot be done.
# exe.windows_runtime_dlls_mode = "always"
# Make the executable a console application on Windows.
# exe.windows_subsystem = "console"
# Make the executable a non-console application on Windows.
# exe.windows_subsystem = "windows"
# Invoke `pip download` to install a single package using wheel archives
# obtained via `pip download`. `pip_download()` returns objects representing
# collected files inside Python wheels. `add_python_resources()` adds these
# objects to the binary, with a load location as defined by the packaging
# policy's resource location attributes.
#exe.add_python_resources(exe.pip_download(["pyflakes==2.2.0"]))
# Invoke `pip install` with our Python distribution to install a single package.
# `pip_install()` returns objects representing installed files.
# `add_python_resources()` adds these objects to the binary, with a load
# location as defined by the packaging policy's resource location
# attributes.
#exe.add_python_resources(exe.pip_install(["appdirs"]))
# Invoke `pip install` using a requirements file and add the collected resources
# to our binary.
exe.add_python_resources(exe.pip_install(["--disable-pip-version-check", "requests"]))
exe.add_python_resources(exe.pip_install(["--disable-pip-version-check", "psycopg[c]"]))
# Read Python files from a local directory and add them to our embedded
# context, taking just the resources belonging to the `foo` and `bar`
# Python packages.
exe.add_python_resources(exe.read_package_root(
path = ".",
packages = ["quickemu_watcher"],
))
# Discover Python files from a virtualenv and add them to our embedded
# context.
#exe.add_python_resources(exe.read_virtualenv(path="/path/to/venv"))
# Filter all resources collected so far through a filter of names
# in a file.
#exe.filter_from_files(files=["/path/to/filter-file"]))
# Return our `PythonExecutable` instance so it can be built and
# referenced by other consumers of this target.
return exe
def make_embedded_resources(exe):
return exe.to_embedded_resources()
def make_install(exe):
# Create an object that represents our installed application file layout.
files = FileManifest()
# Add the generated executable to our install layout in the root directory.
files.add_python_resource(".", exe)
return files
def make_msi(exe):
# See the full docs for more. But this will convert your Python executable
# into a `WiXMSIBuilder` Starlark type, which will be converted to a Windows
# .msi installer when it is built.
return exe.to_wix_msi_builder(
# Simple identifier of your app.
"myapp",
# The name of your application.
"My Application",
# The version of your application.
"1.0",
# The author/manufacturer of your application.
"Alice Jones",
)
def make_wheel(platform_tag, target_triple):
# PyOxidizer's wheel is simply the executable binary as a "script" file.
wheel = PythonWheelBuilder("pyoxidizer", PYOXIDIZER_VERSION)
wheel.generator = "PyOxidizer (%s)" % PYOXIDIZER_VERSION
wheel.tag = "py3-none-%s" % platform_tag
wheel.add_file_dist_info(FileContent(filename = "METADATA", content = WHEEL_METADATA))
#wheel.add_python_resources(exe.pip_install(["requests","lxml"]))
path = "target/%s/release/pyoxidizer" % target_triple
if "-windows-" in target_triple:
path = "%s.exe" % path
wheel.add_file_data("scripts", FileContent(path = path, executable = True))
return wheel
def make_wheel_linux():
# return make_wheel("manylinux2010_x86_64", "x86_64-unknown-linux-musl")
return make_wheel("manylinux2010_x86_64", "x86_64-unknown-linux-gnu")
# Dynamically enable automatic code signing.
def register_code_signers():
# You will need to run with `pyoxidizer build --var ENABLE_CODE_SIGNING 1` for
# this if block to be evaluated.
if not VARS.get("ENABLE_CODE_SIGNING"):
return
# Use a code signing certificate in a .pfx/.p12 file, prompting the
# user for its path and password to open.
# pfx_path = prompt_input("path to code signing certificate file")
# pfx_password = prompt_password(
# "password for code signing certificate file",
# confirm = True
# )
# signer = code_signer_from_pfx_file(pfx_path, pfx_password)
# Use a code signing certificate in the Windows certificate store, specified
# by its SHA-1 thumbprint. (This allows you to use YubiKeys and other
# hardware tokens if they speak to the Windows certificate APIs.)
# sha1_thumbprint = prompt_input(
# "SHA-1 thumbprint of code signing certificate in Windows store"
# )
# signer = code_signer_from_windows_store_sha1_thumbprint(sha1_thumbprint)
# Choose a code signing certificate automatically from the Windows
# certificate store.
# signer = code_signer_from_windows_store_auto()
# Activate your signer so it gets called automatically.
# signer.activate()
# Call our function to set up automatic code signers.
register_code_signers()
# Tell PyOxidizer about the build targets defined above.
register_target("exe", make_exe)
register_target("wheel_linux", make_wheel_linux)
# Resolve whatever targets the invoker of this configuration file is requesting
# be resolved.
resolve_targets()

@ -0,0 +1,18 @@
from typing import Text
import requests
import json
def main():
print("List of users recently watched quickemu:")
print("-------------------")
r = requests.get('https://api.github.com/users/quickemu-project/events')
json_data = json.loads(r.text)
for i in json_data:
if i['type'] == "WatchEvent":
print(i['actor']['display_login'])
print("-------------------")
if __name__ == '__main__':
main()

@ -0,0 +1,20 @@
# Dockerfile oxidized_app:0.1.0 example
FROM pyoxidizer-build:0.22.0 as builder
RUN apt update && apt install python3-dev libpq-dev clang -y
WORKDIR /home
COPY ./app/* /home/
# RUN pyoxidizer build --target-triple x86_64-unknown-linux-musl
RUN pyoxidizer build --target-triple x86_64-unknown-linux-gnu
# RUN ldd /home/build/x86_64-unknown-linux-musl/debug/exe/quickemu_watcher
RUN ldd /home/build/x86_64-unknown-linux-gnu/debug/exe/quickemu_watcher
# RUN ls -lahk /home/build/x86_64-unknown-linux-musl/debug/exe/quickemu_watcher
RUN ls -lahk /home/build/x86_64-unknown-linux-gnu/debug/exe/quickemu_watcher
# copy then compile
#RUN cargo build --release
#RUN cargo install --target x86_64-unknown-linux-musl --path .
FROM ubuntu:jammy-20220801
# COPY --from=builder /home/build/x86_64-unknown-linux-musl/debug/exe/quickemu_watcher /quickemu_watcher
COPY --from=builder /home/build/x86_64-unknown-linux-gnu/debug/exe/quickemu_watcher /quickemu_watcher
CMD [ "/quickemu_watcher" ]

@ -0,0 +1,8 @@
# Dockerfile PyOxidizer 0.22.0 Build Environment
FROM rust:1.63.0-bullseye
WORKDIR /home
RUN apt update && apt install musl-tools python3-dev libpq-dev -y
RUN rustup target add x86_64-unknown-linux-musl
# RUN cargo install --git https://github.com/indygreg/PyOxidizer.git --branch stable pyoxidizer
RUN cargo install pyoxidizer@0.22.0
Loading…
Cancel
Save