adding gitignore

master
Drew Bednar 2 years ago
parent 6bdaec940a
commit 7b30acd1ab

1
.gitignore vendored

@ -0,0 +1 @@
riva_quickstart*/

@ -1,12 +1,10 @@
# Learning Riva # Learning Riva
## Setup ## Setup Pre-reqs
Get NGC setup Get NGC setup with `ngc-cli` or `docker`. After logging into https://ngc.nvidia.com/ go to Profile > Setup to get the cli and API KEY. On my Orin I installed the ngc-cli to /opt/nvida/ngc-cli with a symlink into /usr/local/bin.
Use the ngc-cli (Installed on Orin at /opt/nvida/ngc-cli with a symlink into /usr/local bin) Or with docker:
Or
``` ```
docker login nvcr.io docker login nvcr.io
@ -15,5 +13,118 @@ Username: $oauthtoken
Password: YOUR API KEY Password: YOUR API KEY
``` ```
## Nvidia Docker on Ubuntu 22.04
We need the Nvidia container toolkit for GPU docker integration. [The Docker Utility Engine for NVIDIA GPUs](https://docs.nvidia.com/ai-enterprise/deployment-guide/dg-docker.html) install the nvidia-container-toolkit. This should allow you to run a sample gpu enabled container like:
First check you Cuda driver using `nvidia-smi` on the host, then check the docker environment:
```
docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
```
This resulted in an error because I didn't have cuda drivers installed. See next if this is the case for you.
### Nvidia Driver Installation
Since I didn't have an `nvida-smi` binary I didn't have the Nvidia Driver installed for use with Cuda.
Following the Quickstart guide for nvidia driver install https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html#ubuntu-lts. I had some conflicts, which simply required updating `nvidia-kernel-source-515` and `nvidia-kernel-common-515`.
I could then:
```
sudo apt-get -y install cuda-drivers
```
Which required a reboot:
```
...
A modprobe blacklist file has been created at /etc/modprobe.d to prevent Nouveau
from loading. This can be reverted by deleting the following file:
/etc/modprobe.d/nvidia-graphics-drivers.conf
A new initrd image has also been created. To revert, please regenerate your
initrd by running the following command after deleting the modprobe.d file:
`/usr/sbin/initramfs -u`
*****************************************************************************
*** Reboot your computer and verify that the NVIDIA graphics driver can ***
*** be loaded. ***
*********************
...
```
After reboot `nvidia-smi` displays the cuda driver info
```
un Nov 13 10:54:34 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... On | 00000000:09:00.0 On | N/A |
| 35% 36C P8 21W / 350W | 594MiB / 12288MiB | 2% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 2077 G /usr/lib/xorg/Xorg 316MiB |
| 0 N/A N/A 2336 G /usr/bin/gnome-shell 145MiB |
| 0 N/A N/A 3432 G ...7/usr/lib/firefox/firefox 131MiB |
+-----------------------------------------------------------------------------+
```
I can also see I can run the Docker Container now:
```
docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
Sun Nov 13 15:55:57 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... On | 00000000:09:00.0 On | N/A |
| 0% 36C P8 19W / 350W | 593MiB / 12288MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+
```
### Additional Audio Testing
I downloaded the Audacity tool which comes as an AppImage. This requires the [FUSE (Filesystem in user space)](https://github.com/AppImage/AppImageKit/wiki/FUSE) setup which is installable from the universe repo with:
```
sudo apt install libfuse2
```
## Actual Riva Setup
Following the quick-start guide https://resources.nvidia.com/en-us-riva-asr-briefcase/quick-start-guide directed me to the AMD64 or ARM64 utility scripts )https://catalog.ngc.nvidia.com/orgs/nvidia/teams/riva/resources/riva_quickstart/files?version=2.7.0. Using the Download and CLI option
```
ngc registry resource download-version "nvidia/riva/riva_quickstart:2.7.0"
```
This downloads the quickstart scripts to my local directory. I have excluded these from this repo since they are version and platform dependent. I was content with the default settings of the `config.sh`, so I simply

Loading…
Cancel
Save