basic implementation
							parent
							
								
									11a2b947e0
								
							
						
					
					
						commit
						444f248d28
					
				@ -1 +1,2 @@
 | 
			
		||||
numpy
 | 
			
		||||
pygame
 | 
			
		||||
@ -0,0 +1,88 @@
 | 
			
		||||
"""Module containing simulated robot sensors"""
 | 
			
		||||
import math
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def add_noise(distance, angle, sigma):
 | 
			
		||||
    mean = np.array[distance, angle]
 | 
			
		||||
    # Noise for distance or angle are not correlated
 | 
			
		||||
    covariance = np.diag(sigma ** 2)
 | 
			
		||||
    new_distance, new_angle = np.random.multivariate_normal(mean, covariance)
 | 
			
		||||
    # Don't want negative values
 | 
			
		||||
    new_distance = max(new_distance, 0)
 | 
			
		||||
    new_angle = max(new_angle, 0)
 | 
			
		||||
    return [new_distance, new_angle]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Lidar2DSensor:
 | 
			
		||||
 | 
			
		||||
    def __init__(self, senor_range, environment_map, uncertainty, speed=4, colors=None):
 | 
			
		||||
        """
 | 
			
		||||
        :param range: range of the sensor
 | 
			
		||||
        :param map: the map
 | 
			
		||||
        :param uncertainty: uncertainty of sensor measurements
 | 
			
		||||
        :param speed: revolutions per second
 | 
			
		||||
        """
 | 
			
		||||
        self.range = senor_range
 | 
			
		||||
        self.map = environment_map
 | 
			
		||||
        self._uncertainty = uncertainty
 | 
			
		||||
        self.speed = speed
 | 
			
		||||
        # The sensor noise represented as a distance and an angle
 | 
			
		||||
        self.sigma = np.array([self._uncertainty[0], self._uncertainty[1]])
 | 
			
		||||
        # TODO make this a value of the robot.
 | 
			
		||||
        self.position = (0, 0)
 | 
			
		||||
        self.map_width, self.map_height = self.map.get_surface().get_size()
 | 
			
		||||
        self.sensor_point_cloud = []
 | 
			
		||||
        self.colors = colors
 | 
			
		||||
 | 
			
		||||
    def calc_distance(self, obstacle_position):
 | 
			
		||||
        """Calculates the distance from robot position to obstacle.
 | 
			
		||||
 | 
			
		||||
        Uses the Euclidean distance calculation.
 | 
			
		||||
            distance = sqrt((Xb - Xa)^2 + (Yb-Ya)^2)
 | 
			
		||||
        """
 | 
			
		||||
        px = (obstacle_position[0] - self.position[0]) ** 2
 | 
			
		||||
        py = (obstacle_position[1] - self.position[1]) ** 2
 | 
			
		||||
        return math.sqrt(px + py)
 | 
			
		||||
 | 
			
		||||
    def sense_obstacles(self):
 | 
			
		||||
        data = []
 | 
			
		||||
        x1, y1 = self.position[0], self.position[1]
 | 
			
		||||
 | 
			
		||||
        # 360 degrees == 2Pi radians
 | 
			
		||||
        # np.linspace's use allows up to set the number of values which affects the simulated map resolution.
 | 
			
		||||
        for angle in np.linspace(0, 2 * math.pi, 60, False):
 | 
			
		||||
            # Calculate the end point of the lidar range's line segment in the 2D plane
 | 
			
		||||
            x2, y2 = (x1 + self.range * math.cos(angle), y1 - self.range * math.sin(angle))
 | 
			
		||||
            # Sample the line segment and detext if the sampled point is "black" when overlayed on the simulated map
 | 
			
		||||
            for i in range(0, 100):
 | 
			
		||||
                # TODO break this out to a function
 | 
			
		||||
                u = i / 100
 | 
			
		||||
                # TODO add comment explaining this calculation
 | 
			
		||||
                x = int(x2 * u + x1 * (1 - u))
 | 
			
		||||
                y = int(y2 * u + y1 * (1 - u))
 | 
			
		||||
                # TODO an optimization could be performed to not sample any further
 | 
			
		||||
                # if the point has fallen off the map.
 | 
			
		||||
                # Check if the sampled point is on the map
 | 
			
		||||
                if 0 < x < self.map_width and 0 < y < self.map_height:
 | 
			
		||||
                    map_point_color = self.map.get_at((x, y))
 | 
			
		||||
                    if (map_point_color[0], map_point_color[1], map_point_color[2]) == (0, 0, 0):
 | 
			
		||||
                        # if black add some noise
 | 
			
		||||
                        distance = self.calc_distance((x, y))
 | 
			
		||||
                        noised_distance = add_noise(distance, angle, self.sigma)
 | 
			
		||||
                        # TODO there is definitely a better datastructure to use. Maybe a named tuple?
 | 
			
		||||
                        noised_distance.append(self.position)
 | 
			
		||||
                        data.append(noised_distance)
 | 
			
		||||
                        # if obstacle found stop further sampling this line
 | 
			
		||||
                        break
 | 
			
		||||
                else:
 | 
			
		||||
                    # line fell off of map break this loop iteration
 | 
			
		||||
                    break
 | 
			
		||||
        # TODO OMG I hate this guys code
 | 
			
		||||
        # Callers of this function need to check truthiness not in the return  statement
 | 
			
		||||
        # if len(data)>0:
 | 
			
		||||
        #     return data
 | 
			
		||||
        # else:
 | 
			
		||||
        #     return False
 | 
			
		||||
        return data
 | 
			
		||||
					Loading…
					
					
				
		Reference in New Issue