basic implementation

master
Drew Bednar 4 years ago
parent 11a2b947e0
commit 444f248d28

@ -1 +1,2 @@
numpy
pygame

@ -4,5 +4,7 @@
#
# pip-compile requirements.in
#
numpy==1.20.3
# via -r requirements.in
pygame==2.0.1
# via -r requirements.in

@ -1,3 +1,4 @@
import math
from collections import namedtuple
import pygame
@ -32,3 +33,26 @@ class Environment:
self.map = pygame.display.set_mode((self.map_width, self.map_height))
# overlay external map
self.map.blit(self.external_map, (0, 0))
def calc_2d_position(self, distance, angle, robot_position):
"""Calculates a 2D point from a robots position and a Lidar sensor reading."""
x = distance * math.cos(angle) + robot_position[0]
y = -distance * math.sin(angle) + robot_position[1]
return (int(x), int(y))
# TODO add type hints
def store_points(self, sensor_sweep_data):
"""Stores sensor reading in the environment's point cloud."""
for element in sensor_sweep_data:
# TODO this could be refactored into a LidarReading & RobotPosition named tuples
point = self.calc_2d_position(element[0], element[1], element[2])
# check for dupes
# TODO ok an optimization could probably be added here too
if point not in self.point_cloud:
self.point_cloud.append(point)
def show_sensor_data(self):
# Draw data on new map
self.info_map = self.map.copy()
for point in self.point_cloud:
self.info_map.set_at((int(point[0]), int(point[1])), self.colors.red)

@ -0,0 +1,88 @@
"""Module containing simulated robot sensors"""
import math
import numpy as np
def add_noise(distance, angle, sigma):
mean = np.array[distance, angle]
# Noise for distance or angle are not correlated
covariance = np.diag(sigma ** 2)
new_distance, new_angle = np.random.multivariate_normal(mean, covariance)
# Don't want negative values
new_distance = max(new_distance, 0)
new_angle = max(new_angle, 0)
return [new_distance, new_angle]
class Lidar2DSensor:
def __init__(self, senor_range, environment_map, uncertainty, speed=4, colors=None):
"""
:param range: range of the sensor
:param map: the map
:param uncertainty: uncertainty of sensor measurements
:param speed: revolutions per second
"""
self.range = senor_range
self.map = environment_map
self._uncertainty = uncertainty
self.speed = speed
# The sensor noise represented as a distance and an angle
self.sigma = np.array([self._uncertainty[0], self._uncertainty[1]])
# TODO make this a value of the robot.
self.position = (0, 0)
self.map_width, self.map_height = self.map.get_surface().get_size()
self.sensor_point_cloud = []
self.colors = colors
def calc_distance(self, obstacle_position):
"""Calculates the distance from robot position to obstacle.
Uses the Euclidean distance calculation.
distance = sqrt((Xb - Xa)^2 + (Yb-Ya)^2)
"""
px = (obstacle_position[0] - self.position[0]) ** 2
py = (obstacle_position[1] - self.position[1]) ** 2
return math.sqrt(px + py)
def sense_obstacles(self):
data = []
x1, y1 = self.position[0], self.position[1]
# 360 degrees == 2Pi radians
# np.linspace's use allows up to set the number of values which affects the simulated map resolution.
for angle in np.linspace(0, 2 * math.pi, 60, False):
# Calculate the end point of the lidar range's line segment in the 2D plane
x2, y2 = (x1 + self.range * math.cos(angle), y1 - self.range * math.sin(angle))
# Sample the line segment and detext if the sampled point is "black" when overlayed on the simulated map
for i in range(0, 100):
# TODO break this out to a function
u = i / 100
# TODO add comment explaining this calculation
x = int(x2 * u + x1 * (1 - u))
y = int(y2 * u + y1 * (1 - u))
# TODO an optimization could be performed to not sample any further
# if the point has fallen off the map.
# Check if the sampled point is on the map
if 0 < x < self.map_width and 0 < y < self.map_height:
map_point_color = self.map.get_at((x, y))
if (map_point_color[0], map_point_color[1], map_point_color[2]) == (0, 0, 0):
# if black add some noise
distance = self.calc_distance((x, y))
noised_distance = add_noise(distance, angle, self.sigma)
# TODO there is definitely a better datastructure to use. Maybe a named tuple?
noised_distance.append(self.position)
data.append(noised_distance)
# if obstacle found stop further sampling this line
break
else:
# line fell off of map break this loop iteration
break
# TODO OMG I hate this guys code
# Callers of this function need to check truthiness not in the return statement
# if len(data)>0:
# return data
# else:
# return False
return data
Loading…
Cancel
Save