You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

38 lines
925 B
Python

import tensorflow as tf
from tensorflow import keras
import pandas as pd
import numpy as np
train_df = pd.read_csv('./data/train.csv')
np.random.shuffle(train_df.values)
print(train_df.head())
model = keras.Sequential([
keras.layers.Dense(256, input_shape=(2,), activation='relu'),
keras.layers.Dropout(0.4),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dropout(0.4),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(2, activation='sigmoid')])
model.compile(optimizer='adam',
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
x = np.column_stack((train_df.x.values, train_df.y.values))
model.fit(x, train_df.color.values, batch_size=32, epochs=20)
test_df = pd.read_csv('./data/test.csv')
test_x = np.column_stack((test_df.x.values, test_df.y.values))
print("EVALUATION")
model.evaluate(test_x, test_df.color.values)