Initial commit
commit
6d01be1168
@ -0,0 +1,205 @@
|
||||
cmake_minimum_required(VERSION 3.0.2)
|
||||
project(turtle_sim_nav)
|
||||
|
||||
## Compile as C++11, supported in ROS Kinetic and newer
|
||||
# add_compile_options(-std=c++11)
|
||||
|
||||
## Find catkin macros and libraries
|
||||
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
|
||||
## is used, also find other catkin packages
|
||||
find_package(catkin REQUIRED COMPONENTS
|
||||
geometry_msgs
|
||||
std_msgs
|
||||
)
|
||||
|
||||
## System dependencies are found with CMake's conventions
|
||||
# find_package(Boost REQUIRED COMPONENTS system)
|
||||
|
||||
|
||||
## Uncomment this if the package has a setup.py. This macro ensures
|
||||
## modules and global scripts declared therein get installed
|
||||
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
|
||||
# catkin_python_setup()
|
||||
|
||||
################################################
|
||||
## Declare ROS messages, services and actions ##
|
||||
################################################
|
||||
|
||||
## To declare and build messages, services or actions from within this
|
||||
## package, follow these steps:
|
||||
## * Let MSG_DEP_SET be the set of packages whose message types you use in
|
||||
## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
|
||||
## * In the file package.xml:
|
||||
## * add a build_depend tag for "message_generation"
|
||||
## * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
|
||||
## * If MSG_DEP_SET isn't empty the following dependency has been pulled in
|
||||
## but can be declared for certainty nonetheless:
|
||||
## * add a exec_depend tag for "message_runtime"
|
||||
## * In this file (CMakeLists.txt):
|
||||
## * add "message_generation" and every package in MSG_DEP_SET to
|
||||
## find_package(catkin REQUIRED COMPONENTS ...)
|
||||
## * add "message_runtime" and every package in MSG_DEP_SET to
|
||||
## catkin_package(CATKIN_DEPENDS ...)
|
||||
## * uncomment the add_*_files sections below as needed
|
||||
## and list every .msg/.srv/.action file to be processed
|
||||
## * uncomment the generate_messages entry below
|
||||
## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)
|
||||
|
||||
## Generate messages in the 'msg' folder
|
||||
# add_message_files(
|
||||
# FILES
|
||||
# Message1.msg
|
||||
# Message2.msg
|
||||
# )
|
||||
|
||||
## Generate services in the 'srv' folder
|
||||
# add_service_files(
|
||||
# FILES
|
||||
# Service1.srv
|
||||
# Service2.srv
|
||||
# )
|
||||
|
||||
## Generate actions in the 'action' folder
|
||||
# add_action_files(
|
||||
# FILES
|
||||
# Action1.action
|
||||
# Action2.action
|
||||
# )
|
||||
|
||||
## Generate added messages and services with any dependencies listed here
|
||||
# generate_messages(
|
||||
# DEPENDENCIES
|
||||
# geometry_msgs# std_msgs
|
||||
# )
|
||||
|
||||
################################################
|
||||
## Declare ROS dynamic reconfigure parameters ##
|
||||
################################################
|
||||
|
||||
## To declare and build dynamic reconfigure parameters within this
|
||||
## package, follow these steps:
|
||||
## * In the file package.xml:
|
||||
## * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
|
||||
## * In this file (CMakeLists.txt):
|
||||
## * add "dynamic_reconfigure" to
|
||||
## find_package(catkin REQUIRED COMPONENTS ...)
|
||||
## * uncomment the "generate_dynamic_reconfigure_options" section below
|
||||
## and list every .cfg file to be processed
|
||||
|
||||
## Generate dynamic reconfigure parameters in the 'cfg' folder
|
||||
# generate_dynamic_reconfigure_options(
|
||||
# cfg/DynReconf1.cfg
|
||||
# cfg/DynReconf2.cfg
|
||||
# )
|
||||
|
||||
###################################
|
||||
## catkin specific configuration ##
|
||||
###################################
|
||||
## The catkin_package macro generates cmake config files for your package
|
||||
## Declare things to be passed to dependent projects
|
||||
## INCLUDE_DIRS: uncomment this if your package contains header files
|
||||
## LIBRARIES: libraries you create in this project that dependent projects also need
|
||||
## CATKIN_DEPENDS: catkin_packages dependent projects also need
|
||||
## DEPENDS: system dependencies of this project that dependent projects also need
|
||||
catkin_package(
|
||||
# INCLUDE_DIRS include
|
||||
# LIBRARIES turtle_sim_nav
|
||||
# CATKIN_DEPENDS geometry_msgs std_msgs
|
||||
# DEPENDS system_lib
|
||||
)
|
||||
|
||||
###########
|
||||
## Build ##
|
||||
###########
|
||||
|
||||
## Specify additional locations of header files
|
||||
## Your package locations should be listed before other locations
|
||||
include_directories(
|
||||
# include
|
||||
${catkin_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
## Declare a C++ library
|
||||
# add_library(${PROJECT_NAME}
|
||||
# src/${PROJECT_NAME}/turtle_sim_nav.cpp
|
||||
# )
|
||||
|
||||
## Add cmake target dependencies of the library
|
||||
## as an example, code may need to be generated before libraries
|
||||
## either from message generation or dynamic reconfigure
|
||||
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
|
||||
|
||||
## Declare a C++ executable
|
||||
## With catkin_make all packages are built within a single CMake context
|
||||
## The recommended prefix ensures that target names across packages don't collide
|
||||
# add_executable(${PROJECT_NAME}_node src/turtle_sim_nav_node.cpp)
|
||||
|
||||
## Rename C++ executable without prefix
|
||||
## The above recommended prefix causes long target names, the following renames the
|
||||
## target back to the shorter version for ease of user use
|
||||
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
|
||||
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")
|
||||
|
||||
## Add cmake target dependencies of the executable
|
||||
## same as for the library above
|
||||
# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
|
||||
|
||||
## Specify libraries to link a library or executable target against
|
||||
# target_link_libraries(${PROJECT_NAME}_node
|
||||
# ${catkin_LIBRARIES}
|
||||
# )
|
||||
|
||||
#############
|
||||
## Install ##
|
||||
#############
|
||||
|
||||
# all install targets should use catkin DESTINATION variables
|
||||
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html
|
||||
|
||||
## Mark executable scripts (Python etc.) for installation
|
||||
## in contrast to setup.py, you can choose the destination
|
||||
# catkin_install_python(PROGRAMS
|
||||
# scripts/my_python_script
|
||||
# DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
|
||||
# )
|
||||
|
||||
## Mark executables for installation
|
||||
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
|
||||
# install(TARGETS ${PROJECT_NAME}_node
|
||||
# RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
|
||||
# )
|
||||
|
||||
## Mark libraries for installation
|
||||
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
|
||||
# install(TARGETS ${PROJECT_NAME}
|
||||
# ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
|
||||
# LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
|
||||
# RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
|
||||
# )
|
||||
|
||||
## Mark cpp header files for installation
|
||||
# install(DIRECTORY include/${PROJECT_NAME}/
|
||||
# DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
|
||||
# FILES_MATCHING PATTERN "*.h"
|
||||
# PATTERN ".svn" EXCLUDE
|
||||
# )
|
||||
|
||||
## Mark other files for installation (e.g. launch and bag files, etc.)
|
||||
# install(FILES
|
||||
# # myfile1
|
||||
# # myfile2
|
||||
# DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
|
||||
# )
|
||||
|
||||
#############
|
||||
## Testing ##
|
||||
#############
|
||||
|
||||
## Add gtest based cpp test target and link libraries
|
||||
# catkin_add_gtest(${PROJECT_NAME}-test test/test_turtle_sim_nav.cpp)
|
||||
# if(TARGET ${PROJECT_NAME}-test)
|
||||
# target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
|
||||
# endif()
|
||||
|
||||
## Add folders to be run by python nosetests
|
||||
# catkin_add_nosetests(test)
|
@ -0,0 +1,65 @@
|
||||
<?xml version="1.0"?>
|
||||
<package format="2">
|
||||
<name>turtle_sim_nav</name>
|
||||
<version>0.0.0</version>
|
||||
<description>The turtle_sim_nav package</description>
|
||||
|
||||
<!-- One maintainer tag required, multiple allowed, one person per tag -->
|
||||
<!-- Example: -->
|
||||
<!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> -->
|
||||
<maintainer email="toor@todo.todo">toor</maintainer>
|
||||
|
||||
|
||||
<!-- One license tag required, multiple allowed, one license per tag -->
|
||||
<!-- Commonly used license strings: -->
|
||||
<!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->
|
||||
<license>TODO</license>
|
||||
|
||||
|
||||
<!-- Url tags are optional, but multiple are allowed, one per tag -->
|
||||
<!-- Optional attribute type can be: website, bugtracker, or repository -->
|
||||
<!-- Example: -->
|
||||
<!-- <url type="website">http://wiki.ros.org/turtle_sim_nav</url> -->
|
||||
|
||||
|
||||
<!-- Author tags are optional, multiple are allowed, one per tag -->
|
||||
<!-- Authors do not have to be maintainers, but could be -->
|
||||
<!-- Example: -->
|
||||
<!-- <author email="jane.doe@example.com">Jane Doe</author> -->
|
||||
|
||||
|
||||
<!-- The *depend tags are used to specify dependencies -->
|
||||
<!-- Dependencies can be catkin packages or system dependencies -->
|
||||
<!-- Examples: -->
|
||||
<!-- Use depend as a shortcut for packages that are both build and exec dependencies -->
|
||||
<!-- <depend>roscpp</depend> -->
|
||||
<!-- Note that this is equivalent to the following: -->
|
||||
<!-- <build_depend>roscpp</build_depend> -->
|
||||
<!-- <exec_depend>roscpp</exec_depend> -->
|
||||
<!-- Use build_depend for packages you need at compile time: -->
|
||||
<!-- <build_depend>message_generation</build_depend> -->
|
||||
<!-- Use build_export_depend for packages you need in order to build against this package: -->
|
||||
<!-- <build_export_depend>message_generation</build_export_depend> -->
|
||||
<!-- Use buildtool_depend for build tool packages: -->
|
||||
<!-- <buildtool_depend>catkin</buildtool_depend> -->
|
||||
<!-- Use exec_depend for packages you need at runtime: -->
|
||||
<!-- <exec_depend>message_runtime</exec_depend> -->
|
||||
<!-- Use test_depend for packages you need only for testing: -->
|
||||
<!-- <test_depend>gtest</test_depend> -->
|
||||
<!-- Use doc_depend for packages you need only for building documentation: -->
|
||||
<!-- <doc_depend>doxygen</doc_depend> -->
|
||||
<buildtool_depend>catkin</buildtool_depend>
|
||||
<build_depend>geometry_msgs</build_depend>
|
||||
<build_depend>std_msgs</build_depend>
|
||||
<build_export_depend>geometry_msgs</build_export_depend>
|
||||
<build_export_depend>std_msgs</build_export_depend>
|
||||
<exec_depend>geometry_msgs</exec_depend>
|
||||
<exec_depend>std_msgs</exec_depend>
|
||||
|
||||
|
||||
<!-- The export tag contains other, unspecified, tags -->
|
||||
<export>
|
||||
<!-- Other tools can request additional information be placed here -->
|
||||
|
||||
</export>
|
||||
</package>
|
@ -0,0 +1,241 @@
|
||||
#!/usr/bin/env python3
|
||||
import math
|
||||
import time
|
||||
|
||||
import rospy
|
||||
from geometry_msgs.msg import Twist
|
||||
from turtlesim.msg import Pose
|
||||
|
||||
|
||||
# Global State
|
||||
x = 0
|
||||
y = 0
|
||||
yaw = 0
|
||||
|
||||
def pose_callback(pose_msg):
|
||||
global x, y, yaw
|
||||
x = pose_msg.x
|
||||
y = pose_msg.y
|
||||
yaw = pose_msg.theta
|
||||
|
||||
# TODO CONVERT ALL OF THIS INTO A CLASS
|
||||
# TODO ADD TYPE ANNOTATIONS TO ALL THIS SHIT
|
||||
|
||||
def grid_clean(velocity_publisher):
|
||||
|
||||
desired_pose = Pose()
|
||||
desired_pose.x = 1
|
||||
desired_pose.y = 1
|
||||
desired_pose.theta = 0
|
||||
|
||||
go_to_goal(velocity_publisher, 1, 1)
|
||||
|
||||
set_desired_orientation(velocity_publisher, 30, math.radians(desired_pose.theta))
|
||||
|
||||
for i in range(5):
|
||||
move(velocity_publisher, 2.0, 1.0, True)
|
||||
rotate(velocity_publisher, 20, 90, False)
|
||||
move(velocity_publisher, 2.0, 9.0, True)
|
||||
rotate(velocity_publisher, 20, 90, True)
|
||||
move(velocity_publisher, 2.0, 1.0, True)
|
||||
rotate(velocity_publisher, 20, 90, True)
|
||||
move(velocity_publisher, 2.0, 9.0, True)
|
||||
rotate(velocity_publisher, 20, 90, False)
|
||||
pass
|
||||
|
||||
def spiral(velocity_publisher, rk, wk):
|
||||
"""
|
||||
r = a + b(Theta)
|
||||
"""
|
||||
velocity_msg = Twist()
|
||||
loop_rate = rospy.Rate(1)
|
||||
|
||||
while (x< 10.5) and (y < 10.5):
|
||||
# At every iteration we will increase the linear velocity
|
||||
# We keep constant the angular velocity though
|
||||
rk = rk+1
|
||||
velocity_msg.linear.x = rk
|
||||
velocity_msg.angular.z = wk
|
||||
|
||||
velocity_publisher.publish(velocity_msg)
|
||||
loop_rate.sleep()
|
||||
|
||||
velocity_msg.linear.x = 0
|
||||
velocity_msg.angular.z = 0
|
||||
velocity_publisher.publish(velocity_msg)
|
||||
|
||||
def set_desired_orientation(velocity_publisher, speed_in_degrees, desired_angle_degrees):
|
||||
"""Set desired orientation as an absolute angle."""
|
||||
relative_angle_radians = math.radians(desired_angle_degrees) - yaw
|
||||
clockwise = 0
|
||||
if relative_angle_radians < 0:
|
||||
clockwise = 1
|
||||
else:
|
||||
closewise = 0
|
||||
print("relative_angle_radians: ", math.degrees(relative_angle_radians))
|
||||
print("desired_angle_degree: ", desired_angle_degrees)
|
||||
rotate(velocity_publisher, speed_in_degrees, math.degrees(abs(relative_angle_radians)), clockwise)
|
||||
|
||||
|
||||
|
||||
# TODO YOu could update this to accept a Pose message as the
|
||||
# Target, with a distance tolerance (Epsilon) used when determining
|
||||
# if you have arrived at the target
|
||||
def go_to_goal(velocity_publisher, x_goal, y_goal):
|
||||
global x, y, yaw
|
||||
|
||||
velocity_message = Twist()
|
||||
|
||||
while True:
|
||||
# TODO Make this a param
|
||||
# aka Kp proportional gain for linear velocity
|
||||
K_linear = 0.5
|
||||
distance = abs(math.sqrt(((x_goal-x) ** 2) + ((y_goal-y) ** 2)))
|
||||
|
||||
# This is the P in PID Control. So we have P-Controller
|
||||
# The linear speed is proportional to the distance
|
||||
# K_linear is our contanst.
|
||||
# So if the distance is high, the speed will be high,
|
||||
# but if the distance is 0 the speed will be zero
|
||||
linear_speed = distance * K_linear
|
||||
|
||||
# TODO Make this a param
|
||||
# or Ki which is the proporional gain for the angular velocity
|
||||
K_angular = 4.0
|
||||
# Mathematically, atan2 gives the angle between two vectors
|
||||
desired_angle_goal = math.atan2(y_goal-y, x_goal-x)
|
||||
|
||||
# Likewise the angular speed is proportional to the distance
|
||||
# beween the desired angle and the current angle
|
||||
# The larger the angle the larger the angular speed
|
||||
angular_speed = (desired_angle_goal-yaw)*K_angular
|
||||
|
||||
velocity_message.linear.x = linear_speed
|
||||
velocity_message.angular.z = angular_speed
|
||||
|
||||
velocity_publisher.publish(velocity_message)
|
||||
print(f"x={x}, y={y}, distance to goal: {distance} ")
|
||||
|
||||
# With float values it is extremely hard to comare a
|
||||
# distance == 0 so we want to use some kind of reasoble
|
||||
# error aka epsilon
|
||||
if distance < 0.01:
|
||||
break
|
||||
|
||||
|
||||
def rotate(velocity_publisher, angular_speed_degree, relative_angle_degree, clockwise):
|
||||
"""
|
||||
velocity_publisher: Publisher
|
||||
angular_speed_degree: Degrees per second
|
||||
relative_
|
||||
"""
|
||||
velocity_message = Twist()
|
||||
|
||||
# Convert to radians
|
||||
angular_speed = math.radians(abs(angular_speed_degree))
|
||||
|
||||
if clockwise:
|
||||
velocity_message.angular.z = -abs(angular_speed)
|
||||
else:
|
||||
velocity_message.angular.z = abs(angular_speed)
|
||||
|
||||
loop_rate = rospy.Rate(10)
|
||||
t0 = rospy.Time.now().to_sec()
|
||||
|
||||
while True:
|
||||
rospy.loginfo("Turtlesim rotates")
|
||||
velocity_publisher.publish(velocity_message)
|
||||
|
||||
# Here we are calculating the rotated angle over time
|
||||
t1 = rospy.Time.now().to_sec()
|
||||
# This is an estimate
|
||||
current_angle_degree = (t1-t0) * angular_speed_degree
|
||||
loop_rate.sleep() # In CPP you would also need to call ros spinOnce to dispatch one message
|
||||
|
||||
if current_angle_degree > relative_angle_degree:
|
||||
rospy.loginfo("Reached")
|
||||
break
|
||||
|
||||
velocity_message.angular.z = 0
|
||||
velocity_publisher.publish(velocity_message)
|
||||
|
||||
def move(velocity_publisher, speed, distance, is_forward):
|
||||
velocity_msg = Twist()
|
||||
|
||||
# I don't like the global state access personally...
|
||||
global x, y
|
||||
|
||||
# Save initial location
|
||||
x0 = x
|
||||
y0 = y
|
||||
|
||||
if is_forward:
|
||||
velocity_msg.linear.x = abs(speed)
|
||||
else:
|
||||
velocity_msg.linear.x = -abs(speed)
|
||||
|
||||
distance_moved = 0.0
|
||||
|
||||
# NOTE if you have a lower update rate and higher velocity the
|
||||
# Robot will move further than intended since it is not getting
|
||||
# timely updates on if it has reached it's goal or not.
|
||||
# SO the effect of the loop rate has significant impact on the postion
|
||||
# achieved by the robot.
|
||||
#
|
||||
#[INFO] [1646232853.396795]: Turtlesim moves forward
|
||||
# 4.0959999561309814
|
||||
# We can see that the target of 4.0 was exceeded by 0.095~ meters
|
||||
# a higher refresh rate would have detected that the target distance
|
||||
# was reached sooner.
|
||||
loop_rate = rospy.Rate(10) # Publish velocity message 10 times a second
|
||||
|
||||
while True:
|
||||
rospy.loginfo("Turtlesim moves forward")
|
||||
velocity_publisher.publish(velocity_msg)
|
||||
loop_rate.sleep()
|
||||
# Calc Distance
|
||||
# Linear distance formula. (2 dimensions)
|
||||
# This works because the global x and y state are updated continually by the Pose callback
|
||||
# function that reports the robot's state.
|
||||
#
|
||||
# Alternative we could have taken the speed multipled by the difference in time (speed * (t1 - t0))
|
||||
# which would have needed us to grab a t0 and t1 using time.time() since that returns a time in seconds
|
||||
# This would not have required you to subscribe to the pose of the robot so there wouldn't be any global
|
||||
# state to manage
|
||||
#
|
||||
# THE ROS WAY TO CORRECTLY CALCULATE DISTANCE WOULD HAVE BEEN TO USE tf AKA TRANSFORMS!
|
||||
# That is covered in the SLAM & Nav in ROS for begginers 2
|
||||
distance_moved = abs(math.sqrt(((x - x0) **2) + ((y-y0) ** 2)))
|
||||
print(distance_moved)
|
||||
if distance_moved > distance:
|
||||
rospy.loginfo("Reached")
|
||||
break
|
||||
|
||||
#Stop the robot when the target distance has been reached
|
||||
velocity_msg.linear.x = 0
|
||||
velocity_publisher.publish(velocity_msg)
|
||||
|
||||
|
||||
# TODO Create an action for requesting a move.
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
rospy.init_node("tuturalsim_motion_pose", anonymous=True)
|
||||
|
||||
#declare velocity publisher
|
||||
cmd_vel_topic = '/turtle1/cmd_vel'
|
||||
velocity_publisher = rospy.Publisher(cmd_vel_topic, Twist, queue_size=10)
|
||||
|
||||
postion_topic = "/turtle1/pose"
|
||||
pose_subscriber = rospy.Subscriber(postion_topic, Pose, pose_callback)
|
||||
time.sleep(2)
|
||||
# Move one meter per second traveling forward for a target distance of 4 meters
|
||||
# move(velocity_publisher, 1.0, 4.0, True)
|
||||
# # Rotate 5 degrees a second for 45 degrees
|
||||
# rotate(velocity_publisher, 5.0, 45, False)
|
||||
# go_to_goal(velocity_publisher, 2 ,2)
|
||||
# set_desired_orientation(velocity_publisher, 30, 45)
|
||||
# spiral(velocity_publisher, 0, 2)
|
||||
grid_clean(velocity_publisher)
|
||||
except rospy.ROSInterruptException:
|
||||
rospy.loginfo("Node Terminated")
|
Loading…
Reference in New Issue