Here are some updates

master
androiddrew 5 years ago
parent 2160dcacfd
commit 1e54d652e0

1
.gitignore vendored

@ -1,2 +1,3 @@
.idea/
/env
/binaries

@ -15,7 +15,7 @@ def connect():
if not sta_if.isconnected():
print("connecting to wireless network....")
sta_if.active(True)
sta_if.connect(b"Candy", b"whatisdelcious")
sta_if.connect(b"Candy", b"whatisdelicious")
while not sta_if.isconnected():
pass
print("network config:", sta_if.ifconfig())

@ -0,0 +1,3 @@
# The Kitchen Sink
This project uses most of the code from other projects. It pretty much does most things.

@ -0,0 +1,78 @@
from dht import DHT11
from machine import Pin, SPI, ADC
from ssd1306 import SSD1306_SPI
from time import sleep
# Buttons and Knobs Pins
BUTTON_PIN = Pin(34, Pin.IN)
POT_PIN = ADC(Pin(35))
# DHT Sensor
DHT_PIN = DHT11(Pin(26))
# SPI PINS
MISO_PIN = Pin(19)
MOSI_PIN = Pin(23)
SCK_PIN = Pin(18)
DC_PIN = Pin(4, Pin.OUT)
CS_PIN = Pin(5, Pin.OUT)
RST_PIN = Pin(2, Pin.OUT)
# VSPI Hardware channel. 80 MHz signal rate
vspi = SPI(2, baudrate=2600000, polarity=0, phase=0, bits=8, firstbit=0, sck=SCK_PIN, mosi=MOSI_PIN, miso=MISO_PIN)
oled = SSD1306_SPI(128, 64, vspi, DC_PIN, RST_PIN, CS_PIN)
class DisplayWriter:
def __init__(self, spi):
self.spi = spi
self.height = spi.height
self.width = spi.width
def msg(self, msg: str, l_offset=0, top_offset=0) -> None:
"""Writes a message to an OLED display.
Will wrap text as needed.
"""
self.spi.fill(0)
formatted_msg = self._split_msg(msg, l_offset, top_offset)
for s, left, top in formatted_msg:
self.spi.text(s, left, top)
self.spi.show()
# Todo make this a generator
def _split_msg(self, msg, l_offset, top_offset) -> list:
"""Splits a message at screen width to be used for text wrapping."""
_top_offset = top_offset
result = []
for e in msg.split('\n'):
result.append((e, l_offset, _top_offset))
_top_offset += 10
return result
def dht_report(dht_pin):
dht_pin.measure()
_temp = dht_pin.temperature()
_hum = dht_pin.humidity()
return _temp, _hum
def celsius_to_fahrenheit(celsius: int):
return (celsius * (9 / 5)) + 32
display = DisplayWriter(oled)
while True:
button_val = BUTTON_PIN.value()
light_sensor = round(POT_PIN.read() / 4096 * 100)
temp, hum = dht_report(DHT_PIN)
report = "Temp: {}C/{}F\nHum: {}%\nButton: {}\nLight: {}%".format(temp, celsius_to_fahrenheit(temp), hum,
button_val, light_sensor)
# print(report)
oled.invert(button_val)
display.msg(report)
sleep(0.1)

@ -0,0 +1,145 @@
# MicroPython SSD1306 OLED driver, I2C and SPI interfaces
# https://github.com/micropython/micropython/blob/master/drivers/display/ssd1306.py
from micropython import const
import framebuf
# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xa4)
SET_NORM_INV = const(0xa6)
SET_DISP = const(0xae)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xa0)
SET_MUX_RATIO = const(0xa8)
SET_COM_OUT_DIR = const(0xc0)
SET_DISP_OFFSET = const(0xd3)
SET_COM_PIN_CFG = const(0xda)
SET_DISP_CLK_DIV = const(0xd5)
SET_PRECHARGE = const(0xd9)
SET_VCOM_DESEL = const(0xdb)
SET_CHARGE_PUMP = const(0x8d)
# Subclassing FrameBuffer provides support for graphics primitives
# http://docs.micropython.org/en/latest/pyboard/library/framebuf.html
class SSD1306(framebuf.FrameBuffer):
def __init__(self, width, height, external_vcc):
self.width = width
self.height = height
self.external_vcc = external_vcc
self.pages = self.height // 8
self.buffer = bytearray(self.pages * self.width)
super().__init__(self.buffer, self.width, self.height, framebuf.MONO_VLSB)
self.init_display()
def init_display(self):
for cmd in (
SET_DISP | 0x00, # off
# address setting
SET_MEM_ADDR, 0x00, # horizontal
# resolution and layout
SET_DISP_START_LINE | 0x00,
SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
SET_MUX_RATIO, self.height - 1,
SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
SET_DISP_OFFSET, 0x00,
SET_COM_PIN_CFG, 0x02 if self.height == 32 else 0x12,
# timing and driving scheme
SET_DISP_CLK_DIV, 0x80,
SET_PRECHARGE, 0x22 if self.external_vcc else 0xf1,
SET_VCOM_DESEL, 0x30, # 0.83*Vcc
# display
SET_CONTRAST, 0xff, # maximum
SET_ENTIRE_ON, # output follows RAM contents
SET_NORM_INV, # not inverted
# charge pump
SET_CHARGE_PUMP, 0x10 if self.external_vcc else 0x14,
SET_DISP | 0x01): # on
self.write_cmd(cmd)
self.fill(0)
self.show()
def poweroff(self):
self.write_cmd(SET_DISP | 0x00)
def poweron(self):
self.write_cmd(SET_DISP | 0x01)
def contrast(self, contrast):
self.write_cmd(SET_CONTRAST)
self.write_cmd(contrast)
def invert(self, invert):
self.write_cmd(SET_NORM_INV | (invert & 1))
def show(self):
x0 = 0
x1 = self.width - 1
if self.width == 64:
# displays with width of 64 pixels are shifted by 32
x0 += 32
x1 += 32
self.write_cmd(SET_COL_ADDR)
self.write_cmd(x0)
self.write_cmd(x1)
self.write_cmd(SET_PAGE_ADDR)
self.write_cmd(0)
self.write_cmd(self.pages - 1)
self.write_data(self.buffer)
class SSD1306_I2C(SSD1306):
def __init__(self, width, height, i2c, addr=0x3c, external_vcc=False):
self.i2c = i2c
self.addr = addr
self.temp = bytearray(2)
self.write_list = [b'\x40', None] # Co=0, D/C#=1
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.temp[0] = 0x80 # Co=1, D/C#=0
self.temp[1] = cmd
self.i2c.writeto(self.addr, self.temp)
def write_data(self, buf):
self.write_list[1] = buf
self.i2c.writevto(self.addr, self.write_list)
class SSD1306_SPI(SSD1306):
def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
self.rate = 10 * 1024 * 1024
dc.init(dc.OUT, value=0)
res.init(res.OUT, value=0)
cs.init(cs.OUT, value=1)
self.spi = spi
self.dc = dc
self.res = res
self.cs = cs
import time
self.res(1)
time.sleep_ms(1)
self.res(0)
time.sleep_ms(10)
self.res(1)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs(1)
self.dc(0)
self.cs(0)
self.spi.write(bytearray([cmd]))
self.cs(1)
def write_data(self, buf):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs(1)
self.dc(1)
self.cs(0)
self.spi.write(buf)
self.cs(1)

@ -1,3 +1,5 @@
# MQTT Light Sensor
This project uses a simple photo resistor to capture data and push the result to an MQTT broker.
It was one of my first attempts at build a Micropython project.

@ -2,9 +2,11 @@ import usocket as socket
import ustruct as struct
from ubinascii import hexlify
class MQTTException(Exception):
pass
class MQTTClient:
def __init__(self, client_id, server, port=0, user=None, password=None, keepalive=0,
@ -85,7 +87,7 @@ class MQTTClient:
self.sock.write(premsg, i + 2)
self.sock.write(msg)
#print(hex(len(msg)), hexlify(msg, ":"))
# print(hex(len(msg)), hexlify(msg, ":"))
self._send_str(self.client_id)
if self.lw_topic:
self._send_str(self.lw_topic)
@ -119,7 +121,7 @@ class MQTTClient:
sz >>= 7
i += 1
pkt[i] = sz
#print(hex(len(pkt)), hexlify(pkt, ":"))
# print(hex(len(pkt)), hexlify(pkt, ":"))
self.sock.write(pkt, i + 1)
self._send_str(topic)
if qos > 0:
@ -146,7 +148,7 @@ class MQTTClient:
pkt = bytearray(b"\x82\0\0\0")
self.pid += 1
struct.pack_into("!BH", pkt, 1, 2 + 2 + len(topic) + 1, self.pid)
#print(hex(len(pkt)), hexlify(pkt, ":"))
# print(hex(len(pkt)), hexlify(pkt, ":"))
self.sock.write(pkt)
self._send_str(topic)
self.sock.write(qos.to_bytes(1, "little"))
@ -154,7 +156,7 @@ class MQTTClient:
op = self.wait_msg()
if op == 0x90:
resp = self.sock.read(4)
#print(resp)
# print(resp)
assert resp[1] == pkt[2] and resp[2] == pkt[3]
if resp[3] == 0x80:
raise MQTTException(resp[3])

@ -30,4 +30,7 @@ To invert colors:
oled.invert(True)
```
A `DisplayWriter` was added as a convenience to writing out messages to the OLED. Use this for printing text messages to the display. Newline characters will dwa
```
```

@ -6,7 +6,7 @@ from time import sleep
# DHT Sensor
DHT_PIN = DHT11(Pin(26))
# OLD PINS
# SPI PINS
MISO_PIN = Pin(19)
MOSI_PIN = Pin(23)
SCK_PIN = Pin(18)
@ -56,11 +56,16 @@ def dht_report(dht_pin):
return _temp, _hum
def celsius_to_fahrenheit(celsius: int):
return (celsius * (9 / 5)) + 32
display = DisplayWriter(oled)
while True:
temp, hum = dht_report(DHT_PIN)
report = "Temp: {}C\nHum: {}%".format(temp, hum)
cel, hum = dht_report(DHT_PIN)
fahr = celsius_to_fahrenheit(cel)
report = "Temp: {}C/{}F\nHum: {}%".format(cel, fahr, hum)
print(report)
display.msg(report)
sleep(1)

@ -0,0 +1,3 @@
# Threading
The ESP32 has two cores, but Micropython will only run in single core mode. We can however use threading.

@ -0,0 +1,11 @@
import _thread
import time
def testThread():
while True:
print("Hello threading")
time.sleep(15) # Time is so high so that we can actually get a repl.
_thread.start_new_thread(testThread, ())

@ -0,0 +1,2 @@
import _thread
Loading…
Cancel
Save