|  |  |  | @ -5,10 +5,10 @@ import numpy as np | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  | def add_noise(distance, angle, sigma): | 
		
	
		
			
				|  |  |  |  |     mean = np.array[distance, angle] | 
		
	
		
			
				|  |  |  |  |     _mean = np.array([distance, angle]) | 
		
	
		
			
				|  |  |  |  |     # Noise for distance or angle are not correlated | 
		
	
		
			
				|  |  |  |  |     covariance = np.diag(sigma ** 2) | 
		
	
		
			
				|  |  |  |  |     new_distance, new_angle = np.random.multivariate_normal(mean, covariance) | 
		
	
		
			
				|  |  |  |  |     new_distance, new_angle = np.random.multivariate_normal(_mean, covariance) | 
		
	
		
			
				|  |  |  |  |     # Don't want negative values | 
		
	
		
			
				|  |  |  |  |     new_distance = max(new_distance, 0) | 
		
	
		
			
				|  |  |  |  |     new_angle = max(new_angle, 0) | 
		
	
	
		
			
				
					|  |  |  | @ -32,7 +32,7 @@ class Lidar2DSensor: | 
		
	
		
			
				|  |  |  |  |         self.sigma = np.array([self._uncertainty[0], self._uncertainty[1]]) | 
		
	
		
			
				|  |  |  |  |         # TODO make this a value of the robot. | 
		
	
		
			
				|  |  |  |  |         self.position = (0, 0) | 
		
	
		
			
				|  |  |  |  |         self.map_width, self.map_height = self.map.get_surface().get_size() | 
		
	
		
			
				|  |  |  |  |         self.map_width, self.map_height = self.map.get_size() | 
		
	
		
			
				|  |  |  |  |         self.sensor_point_cloud = [] | 
		
	
		
			
				|  |  |  |  |         self.colors = colors | 
		
	
		
			
				|  |  |  |  | 
 | 
		
	
	
		
			
				
					|  |  |  | 
 |