Working initial implementation
parent
4fddd87271
commit
3eac8f44cb
@ -0,0 +1,29 @@
|
||||
default_stages: [commit, push]
|
||||
repos:
|
||||
- repo: https://github.com/shellcheck-py/shellcheck-py
|
||||
rev: v0.9.0.2
|
||||
hooks:
|
||||
- id: shellcheck
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v3.2.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
- id: check-yaml
|
||||
- id: check-added-large-files
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 23.3.0
|
||||
hooks:
|
||||
- id: black
|
||||
- repo: https://github.com/charliermarsh/ruff-pre-commit
|
||||
# Ruff version.
|
||||
rev: "v0.0.263"
|
||||
hooks:
|
||||
- id: ruff
|
||||
# Enable auto fix
|
||||
# args: [--fix, --exit-non-zero-on-fix]
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.12.0
|
||||
hooks:
|
||||
- id: isort
|
||||
name: isort (python)
|
@ -0,0 +1,107 @@
|
||||
import os
|
||||
from threading import Lock
|
||||
from typing import BinaryIO
|
||||
|
||||
import ffmpeg
|
||||
import numpy as np
|
||||
import torch
|
||||
import whisper
|
||||
from fastapi import FastAPI, File, UploadFile
|
||||
from fastapi.responses import RedirectResponse
|
||||
|
||||
from . import __version__
|
||||
|
||||
# TODO use pydantic config
|
||||
model_name = os.getenv("ASR_MODEL", "base")
|
||||
if torch.cuda.is_available():
|
||||
model = whisper.load_model(model_name).cuda()
|
||||
else:
|
||||
model = whisper.load_model(model_name)
|
||||
model_lock = Lock()
|
||||
|
||||
|
||||
# TODO use pydantic config
|
||||
SAMPLE_RATE = 16000
|
||||
|
||||
|
||||
# TODO move transcribe to a modeling worker
|
||||
def transcribe(
|
||||
audio,
|
||||
# task: Union[str, None],
|
||||
# language: Union[str, None],
|
||||
# initial_prompt: Union[str, None],
|
||||
):
|
||||
# options_dict = {"task" : task}
|
||||
# if language:
|
||||
# options_dict["language"] = language
|
||||
# if initial_prompt:
|
||||
# options_dict["initial_prompt"] = initial_prompt
|
||||
with model_lock:
|
||||
# result = model.transcribe(audio, **options_dict)
|
||||
result = model.transcribe(audio)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# TODO probably can offload this on a worker queue too
|
||||
def load_audio(file: BinaryIO, encode=True, sr: int = SAMPLE_RATE):
|
||||
"""
|
||||
Open an audio file object and read as mono waveform, resampling as necessary.
|
||||
Modified from https://github.com/openai/whisper/blob/main/whisper/audio.py
|
||||
to accept a file object
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file: BinaryIO
|
||||
The audio file like object
|
||||
encode: Boolean
|
||||
If true, encode audio stream to WAV before sending to whisper
|
||||
sr: int
|
||||
The sample rate to resample the audio if necessary
|
||||
Returns
|
||||
-------
|
||||
A NumPy array containing the audio waveform, in float32 dtype.
|
||||
"""
|
||||
if encode:
|
||||
try:
|
||||
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
||||
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
||||
out, _ = (
|
||||
ffmpeg.input("pipe:", threads=0)
|
||||
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
|
||||
.run(
|
||||
cmd="ffmpeg",
|
||||
capture_stdout=True,
|
||||
capture_stderr=True,
|
||||
input=file.read(),
|
||||
)
|
||||
)
|
||||
except ffmpeg.Error as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
||||
else:
|
||||
out = file.read()
|
||||
|
||||
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
||||
|
||||
|
||||
app = FastAPI(
|
||||
title="Local Whisper",
|
||||
description="Making OpenAPI's Open Whisper available via ReST API locally.",
|
||||
version=__version__,
|
||||
swagger_ui_parameters={"defaultModelsExpandDepth": -1},
|
||||
license_info={
|
||||
"name": "MIT License",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@app.get("/", response_class=RedirectResponse, include_in_schema=False)
|
||||
async def index():
|
||||
return "/docs"
|
||||
|
||||
|
||||
@app.post("/audio/transcriptions")
|
||||
async def asr(file: UploadFile = File(...)):
|
||||
if file.content_type.startswith("audio/"):
|
||||
transcription = transcribe(load_audio(file.file))
|
||||
return {"text": transcription["text"]}
|
@ -1,2 +1,4 @@
|
||||
fastapi
|
||||
openai-whisper
|
||||
uvicorn
|
||||
python-multipart
|
||||
|
Loading…
Reference in New Issue